Skip to main content
Log in

Strength and Corrosion Studies of Mortars Added with Pozzolan in Sulphate Ions Environment

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

The pozzolanic materials have the capacity to modify the performance of Portland cement (PC) mortars. When they are used as supplementary materials, the physical-chemical properties such as compressive-strength and resistance to aggressive environments (chloride, sulphate, acids) are improved. In this article, a study was carried out to evaluate the effects of the addition of two natural pozzolans: volcanic pumice and zeolite. Both used as substitutes for PC in mortars based on cement, considering mechanical strength and the aggressive effect of sulphate ions. Furthermore, the electrochemical behavior of the steel rebar embedded in these mortars was studied during 730 days of exposition to aggressive conditions. The results revealed that the development of the compressive strength of mortars with pozzolans added reached similar values to the reference mortar. It was possible to observe that the addition of the pozzolan suppresses the ettringite formation proportionally to the pozzolan content. The corrosion resistance of the steel improves with the addition of pozzolans after 730 days of exposition at sulphate environment. The results of this study revealed the feasibility to use natural pozzolan as an additive during the preparation of cement up to 25% without significant changes of the physical-chemical properties of the mortars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • ACI 116 (2000) Cement and concrete terminology. ACI Committee, ACI 116R-00, American Concrete Institute, Farmington Hills, MI, USA

    Google Scholar 

  • Al-Dulaijan SU, Maslehuddin M, Al-Zahrani MM, Sharif AM, Shameem M, Ibrahim M (2003) Sulfate resistance of plain and blended cements exposed to varying concentrations of sodium sulfate. Cement and Concrete Composites 25(4–5):429–437, DOI: https://doi.org/10.1016/S0958-9465(02)00083-5

    Article  Google Scholar 

  • ASTM C109 (2002) Standard test method for compressive strength of hydraulic cement mortars. ASTM C109, American Society of Testing Materials, West Conshohocken, PA, USA

    Google Scholar 

  • ASTM C311 (2000) Standard test methods for sampling and testing fly ash or natural pozzolans for use as a mineral admixture in Portland-Cement concrete. ASTM C311, American Society of Testing Materials, West Conshohocken, PA, USA

    Google Scholar 

  • ASTM C618 (2003) Standard specification for fly ash and raw or calcined natural pozzolan for use as a mineral admixture in Portland cement concrete. ASTM C618, American Society of Testing Materials, West Conshohocken, PA, USA

    Google Scholar 

  • ASTM C642–97 (1997) Standard test method for density, absorption, and voids in hardened concrete. ASTM C642-97, American Society of Testing Materials, West Conshohocken, PA, USA

    Google Scholar 

  • ASTM C778–13 (2013) Standard specification for standard sand. ASTM C778-13, American Society of Testing Materials, West Conshohocken, PA, USA

    Google Scholar 

  • ASTM C876–09 (2013) Standard test method for half-cell potentials of uncoated reinforcing steel in concrete. ASTM C876-09, American Society of Testing Materials, West Conshohocken, PA, USA

    Google Scholar 

  • ASTM C1012 (2004) Standard test method for length change of hydraulic-cement mortars exposed to a sulphate solution. ASTM C1012, American Society of Testing Materials, West Conshohocken, PA, USA

    Google Scholar 

  • Cavdar A, Yetgin S (2010) Investigation of abrasion resistance of cement mortar with different pozzolanic compositions and subjected to sulfated medium. Construction and Building Materials 24(4):461–470, DOI: https://doi.org/10.1016/j.conbuildmat.2009.10.016

    Article  Google Scholar 

  • Cohen MD, Bentur A (1988) Durability of portland cement-silica fume pastes in magnesium sulfate and sodium sulfate solutions. ACI Materials Journal 85(3):148–157

    Google Scholar 

  • Demir I, Güzelkücük S, Sevim Ö (2018) Effects of sulfate on cement mortar with hybrid pozzolan substitution. Engineering Science and Technology, an International Journal JESTECH 21(3):275–283, DOI: https://doi.org/10.1016/j.jestch.2018.04.009

    Article  Google Scholar 

  • Demir I, Sevim Ö (2017) Effect of sulfate on cement mortars containing Li2SO4, LiNO3, Li2CO3 and LiBr. Construction and Building Materials 156:46–55, DOI: https://doi.org/10.1016/j.conbuildmat.2017.08.148

    Article  Google Scholar 

  • Donatello S, Tyrer M, Cheeseman CR (2010) Comparison of test methods to assess pozzolanic activity. Cement and Concrete Composites 32(2):121–127, DOI: https://doi.org/10.1016/j.cemconcomp.2009.10.008

    Article  Google Scholar 

  • Fernández MR (2016) Estudio de la cristaloquímica y cuantificación por difracción de rayos X en materiales tipo hidrotalcita procedentes de la química del cemento. PhD Thesis, Universidad Autónoma de Madrid, Madrid, España

    Google Scholar 

  • Fodil D, Mohamed M (2018) Compressive strength and corrosion evaluation of concretes containing pozzolana and perlite Immersed in aggressive environments. Construction and Building Materials 179:25–34, DOI: https://doi.org/10.1016/j.conbuildmat.2018.05.190

    Article  Google Scholar 

  • Ghrici M, Kenai S, Mansour-Said M, Kadri EH (2006) Some engineering properties of concrete containing natural pozzolan and silica fume. Journal of Asian Architecture and Building Engineering 5(2):349–354, DOI: https://doi.org/10.3130/jaabe.5.349

    Article  Google Scholar 

  • González JA, Miranda JM (2007) Corrosión en las estructuras de hormigón armado: Fundamento, medida, diagnosis y prevención. CSIC, Madrid Biblioteca de Ciencias, Madrid, España, 89–105

    Google Scholar 

  • Hamidi M, Kacimi L, Cyr M, Clastres P (2013) Evaluation and improvement of pozzolanic activity of andesite for its use in ecoefficient cement. Construction and Building Materials 47:1268–1277, DOI: https://doi.org/10.1016/j.conbuildmat.2013.06.013

    Article  Google Scholar 

  • Hossain KMA (1999) Performance of volcanic ash concrete in marine environment. Proceedings of 24th OWICS conference, 21st century concrete and structures, August 25–26, Singapore, Singapore

  • Hossain KMA, Lachemi M (2006) Performance of volcanic ash and pumice based blended cement concrete in mixed sulfate environment. Cement and Concrete Research 36(6):1123–1133, DOI: https://doi.org/10.1016/j.cemconres.2006.03.010

    Article  Google Scholar 

  • Join Committee on Powder Diffraction Standards (2005) Database PDF-4+2005. International Center for Diffraction Data, Newtown Square, PA, USA

    Google Scholar 

  • Kocak Y, Tasci E, Kaya U (2013) The effect of using natural zeolite on the properties and hydration characteristics of blended cements. Construction and Building Materials 47:720–727, DOI: https://doi.org/10.1016/j.conbuildmat.2013.05.033

    Article  Google Scholar 

  • Leklou N, Nguyen VH, Mounanga P (2017) The effect of the partial cement substitution with fly ash on delayed ettringite formation in heat-cured mortars. KSCE Journal of Civil Engineering 21(4):1359–1366, DOI: https://doi.org/10.1007/s12205-016-0778-9

    Article  Google Scholar 

  • Mendoza-Barron J, Jacobo-Azuara A, Leyva-Ramos R, Berber-Mendoza MS, Guerrero-Coronado RM, Fuentes-Rubio L, Martínez-Rosales JM (2011) Adsorption of arsenic (V) from a water solution onto a surfactant-modified zeolite. Adsorption 17:489–496, DOI: https://doi.org/10.1007/s10450-010-9307-1

    Article  Google Scholar 

  • Narvaez LE (2015) Cinética de reacción de los silicatos de calcio hidrolizados (CSH) derivados del uso de puzolanas en sistemas constructivos de bajo impacto ambiental. PhD Thesis, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México

    Google Scholar 

  • Narvaez LE, Rosales-Martinez RI, Narvaez-Hernández L, Hernández-Hernández LS, Miranda-Vidales JM (2015) Electrochemical stability of steel reinforced bars embedded in cement mortars containing clinoptilolite as supplementary. International Journal of Electrochemical Science 10:10003–10016

    Google Scholar 

  • Rong L, Linhua J, Guohong H, Yerand Z, Xingrong L, Hongqiang C, Chuangsheng X (2016) The effect of carbonate and sulfate ions on chloride threshold level of reinforcement corrosion in mortar with/without fly ash. Construction and Building Materials 113:90–95, DOI: https://doi.org/10.1016/j.conbuildmat.2016.03.018

    Article  Google Scholar 

  • Santhanam M, Cohen MD, Olek J (2003) Mechanism of sulfate attack: A fresh look: Part 2. Proposed mechanisms. Cement and Concrete Research 33(3):341–346, DOI: https://doi.org/10.1016/S0008-8846(02)00958-4

    Article  Google Scholar 

  • Stern M, Geary AL (1957) Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves. Journal of the Electrochemical Society 104(1):56–63

    Article  Google Scholar 

  • Tapan M, Depci T, Özvan A, Efe T, Oyan V (2013) Effect of physical, chemical and electro-kinetic properties of pumice on strength development of pumice blended cements. Materials and Structures 46:1695–1706, DOI: https://doi.org/10.1617/s11527-012-0008-y

    Article  Google Scholar 

  • Tironi A, Trezza MA, Scian AN, Irassar EF (2013) Assessment of pozzolanic activity of different calcined clays. Cement and Concrete Composites 37:319–327, DOI: https://doi.org/10.1016/j.cemconcomp.2013.01.002

    Article  Google Scholar 

  • Vázquez-Moreno T (1976) Contribución al estudio de las reacciones de hidratación del cemento portland por espectroscopia infrarroja. Estudio de clínkeres y de cementos portland anhidros. Materiales de Construcción 26(162):31–47, DOI: https://doi.org/10.3989/mc.1976.v26.i162.1232

    Article  Google Scholar 

  • Yakymechko Y, Sanytsky M, Chekanskyi B (2016) Research of alteration of portlandite crystals habit as a factor of structure formation control for lime-containing binders. EUREKA: Physics and Engineering (6):19–28, DOI: https://doi.org/10.21303/2461-4262.2016.00209

  • Yilmaz B, Uçar A, Öteyaka B, Uz V (2007) Properties of zeolitic tuff (clinoptilolite) blended portland cement. Building and Environment 42(11):3808–3815, DOI: https://doi.org/10.1016/j.buildenv.2006.11.006

    Article  Google Scholar 

Download references

Acknowledgments

R.I. Martínez would like to acknowledge the financial support of the Consejo Nacional de Ciencia y Tecnología (CONACYT-México) with the CVU/scholarship numbers 415178/257394. The authors would like to acknowledge the financial support of PRODEP [511-6/177930] as well as the technical assistance of Claudia Hernández and Martha Lomelí.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juana María Miranda-Vidales.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Rosales, R.I., Miranda-Vidales, J.M., Narváez-Hernández, L. et al. Strength and Corrosion Studies of Mortars Added with Pozzolan in Sulphate Ions Environment. KSCE J Civ Eng 24, 3810–3819 (2020). https://doi.org/10.1007/s12205-020-0183-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-020-0183-2

Keywords

Navigation