Skip to main content
Log in

Through-Thickness Inhomogeneity of Texture, Microstructure, and Mechanical Properties After Rough and Finish Rolling Treatments in Hot-Rolled API 5L X70 Pipeline Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The development of inhomogeneity in the microstructure, texture, and mechanical property in hot-rolled (API) 5L X70 pipeline steel after rough and finish thermomechanical control processing has been investigated by experimental measurements. Our investigations revealed that the rough rolling stage produced mostly large and coarse ferrite grains across the thickness, while the finish rolling stage led to a rather refined small-grained microstructure. EBSD investigations confirmed that after the rough rolling stage, recovered and deformed grains dominated the quarter and mid-thickness compared to the surface. Investigation of the finish rolled steel showed that in comparison with the quarter and mid-thickness sections of the plate, the surface section mostly consists of deformed grains. The texture components obtained from x-ray measurement showed that after rough and finish processing stages, the {001} <100>, {110} <112>, {123} <634>, {112} <111>, and {001} <110> components were observed to be present. However, inhomogeneity of texture was observed at different depths of the rolled steel, such that in comparison with the surface, volume fractions of texture and intensities of the desired γ-fiber texture were seen to be highest at the mid- and quarter-thickness sections after both rolling stages. The room-temperature tensile stress–strain curves showed that the highest yield strength was observed for samples obtained from the near-surface section, while samples obtained from the mid-thickness section showed the highest elongation during tensile deformation. Overall, the final stage processing was observed to refine the final microstructure of the steel, thus improving the strength of the steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.Y. Huh, H.C. Kim, J.J. Park, and O. Engler, Evolution of Through-Thickness Texture Gradients in Various Steel Sheets, Met. Mater. Int., 1999, 5(5), p 437–443

    Article  CAS  Google Scholar 

  2. E.J. Pickering and M. Holland, Detection of Macrosegregation in a Large Metallic Specimen Using XRF, Ironmak. Steelmak., 2014, 41(7), p 493–499

    Article  CAS  Google Scholar 

  3. R.E. Hook, Physical Asymmetry of the Crystallographic Texture of an Interstitial-Free Sheet Steel, Metall. Mater. Trans. A, 1993, 2009(24), p 2009–2019

    Article  Google Scholar 

  4. H. Mizukami, K. Hayashi, M. Numata, and A. Yamanaka, Prediction of Solid–Liquid Interfacial Energy of Steel During Solidification and Control of Dendrite Arm Spacing, ISIJ Int., 2011, 97(9), p 457–466

    CAS  Google Scholar 

  5. Y.B. Park, D.N. Lee, and G. Gottstein, Effect of Hot Rolling Condition on the Development of Textures in Ultra Low Carbon Steel, J. Mater. Process. Technol., 1994, 45(1–4), p 471–476

    Article  Google Scholar 

  6. K.T. Kim, S.G. Ko, and J.M. Han, Effects of Microstructural Inhomogeneity on HIC Susceptibility Ipc2014-33341 2014, p 1–8

  7. A.I. Fedosseev and D. Raabe, Application of the Method of Superposition of Harmonic Currents for the Simulation of Inhomogeneous Deformation During Hot Rolling of FeCr, Scr. Metall. Mater., 1994, 30(1), p 1–6

    Article  CAS  Google Scholar 

  8. C.C. Tasan, J.P.M. Hoefnagels, and M.G.D. Geers, Microstructural Banding Effects Clarified Through Micrographic Digital Image Correlation, Scr. Mater., 2010, 62, p 835–838

    Article  CAS  Google Scholar 

  9. A.A. Korda, Y. Mutoh, Y. Miyashita, T. Sadasue, and S.L. Mannan, In Situ Observation of Fatigue Crack Retardation in Banded Ferrite-Pearlite Microstructure Due to Crack Branching, Scr. Mater., 2006, 54, p 1835–1840

    Article  CAS  Google Scholar 

  10. Y.B. Park, D.N. Lee, and G. Gottstein, Development of Texture Inhomogeneity During Hot Rolling in Interstitial Free Steel, Acta Mater., 1996, 44(8), p 3421–3427

    Article  CAS  Google Scholar 

  11. Y.W. Kim, J.H. Kim, S.G. Hong, and C.S. Lee, Effects of Rolling Temperature on the Microstructure and Mechanical Properties of Ti-Mo Microalloyed Hot-Rolled High Strength Steel, Mater. Sci. Eng. A, 2014, 605, p 244–252

    Article  CAS  Google Scholar 

  12. Y. Liu, F. Zhu, Y. Li, and G. Wang, Effect of TMCP Parameters on the Microstructure and Properties of an Nb-Ti Microalloyed Steel, ISIJ Int., 2005, 45(6), p 851–857

    Article  CAS  Google Scholar 

  13. X.J. Shen, S. Tang, Y.J. Wu, X.L. Yang, J. Chen, Z.Y. Liu, R.D.K. Misra, and G.D. Wang, Evolution of Microstructure and Crystallographic Texture of Microalloyed Steel During Warm Rolling in Dual Phase Region and Their Influence on Mechanical Properties, Mater. Sci. Eng. A, 2017, 685, p 194–204

    Article  CAS  Google Scholar 

  14. S. Vervynckt, K. Verbeken, B. Lopez, and J.J. Jonas, Modern HSLA Steels and Role of Non-Recrystallisation Temperature, Int. Mater. Rev., 2012, 57(4), p 187–207

    Article  CAS  Google Scholar 

  15. V. Carretero Olalla, V. Bliznuk, N. Sanchez, P. Thibaux, L.A.I. Kestens, and R.H. Petrov, Analysis of the Strengthening Mechanisms in Pipeline Steels as a Function of the Hot Rolling Parameters, Mater. Sci. Eng. A, 2014, 604, p 46–56. https://doi.org/10.1016/j.msea.2014.02.066

    Article  CAS  Google Scholar 

  16. S. Nafisi, M.A. Arafin, L. Collins, and J. Szpunar, Texture and Mechanical Properties of API X100 Steel Manufactured Under Various Thermomechanical Cycles, Mater. Sci. Eng. A, 2012, 531, p 2–11

    Article  CAS  Google Scholar 

  17. M.R. Toroghinejad, A.O. Humphreys, D. Liu, F. Ashrafizadeh, A. Najafizadeh, and J.J. Jonas, Effect of Rolling Temperature on the Deformation and Recrystallization Textures of Warm-Rolled Steels, Metall. Mater. Trans. A., 2003, 34(5), p 1163–1174

    Article  Google Scholar 

  18. A. Haldar and R.K. Ray, Microstructural and Textural Development in an Extra Low Carbon Steel During Warm Rolling, Mater. Sci. Eng. A, 2005, 391(1–2), p 402–407

    Google Scholar 

  19. R.K. Ray and A. Haldar, Texture Development in Extra Low Carbon (ELC) and Interstitial Free (IF) Steels During Warm Rolling, Mater. Manuf. Process., 2002, 17(5), p 715–729

    Article  CAS  Google Scholar 

  20. D. Raabe and K. Lücke, Texture and Microstructure of Hot Rolled Steel, Scr. Metall. Mater., 1992, 26(8), p 1221–1226

    Article  CAS  Google Scholar 

  21. D. Raabe, Overview on Basic Types of Hot Rolling Textures of Steels, Steel Res. Int., 2003, 74(5), p 327–337

    Article  CAS  Google Scholar 

  22. P. Siahpour, R. Miresmaeili, and A. Sabour Rouhaghdam, Temperature Effect of Hot Rolling Process on Microstructure, Strength and Fracture Toughness of X65 Pipeline Steel, Trans. Indian Inst. Met., 2018, 71(6), p 1531–1541

    Article  CAS  Google Scholar 

  23. M.A. Mohtadi-Bonab, M. Eskandari, and J.A. Szpunar, Texture, Local Misorientation, Grain Boundary and Recrystallization Fraction in Pipeline Steels Related to Hydrogen Induced Cracking, Mater. Sci. Eng. A, 2014, 620, p 97–106

    Article  CAS  Google Scholar 

  24. V. Venegas, F. Caleyo, L.E. Vázquez, T. Baudin, and J.M. Hallen, On the Influence of Crystallographic Texture on Pitting Corrosion in Pipeline Steels, Int. J. Electrochem. Sci., 2015, 10(4), p 3539–3552

    CAS  Google Scholar 

  25. V. Venegas, F. Caleyo, J.M. Hallen, T. Baudin, and R. Penelle, Role of Crystallographic Texture in Hydrogen-Induced Cracking of Low Carbon Steels for Sour Service Piping, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2007, 38(5), p 1022–1031

    Article  Google Scholar 

  26. V. Venegas, F. Caleyo, J.L. González, T. Baudin, J.M. Hallen, and R. Penelle, EBSD Study of Hydrogen-Induced Cracking in API-5L-X46 Pipeline Steel, Scr. Mater., 2005, 52(2), p 147–152

    Article  CAS  Google Scholar 

  27. M.A. Arafin and J.A. Szpunar, A New Understanding of Intergranular Stress Corrosion Cracking Resistance of Pipeline Steel Through Grain Boundary Character and Crystallographic Texture Studies, Corros. Sci., 2009, 51(1), p 119–128

    Article  CAS  Google Scholar 

  28. R.K. Ray and J.J. Jonas, Transformation Textures in Steels, Int. Met. Rev., 1990, 35(1), p 1–36

    Article  Google Scholar 

  29. R.K. Ray, J.J. Jonas, P. Butron, and J. Savoie, Transformation Texture in Steels, ISIJ Int., 1994, 34(12), p 927–942

    Article  CAS  Google Scholar 

  30. P.K.C. Venkatsurya, R.D.K. Misra, M.D. Mulholland, M. Manohar, and J.E. Hartmann, Effect of Microstructure on the Mechanical Properties and Texture in High Strength 560 MPa Linepipe Steels, Mater. Sci. Eng. A, 2013, 575, p 6–14

    Article  CAS  Google Scholar 

  31. J.J. Jonas (Ed.), Transformation Textures Associated with Steel Processing, Springer, 2009, p 3–17

  32. J.-Y. Kang, D.-I. Kim, and H.-C. Lee, Texture Development in Low Carbon Sheet Steels for Automotive Application, Springer, 2009, p 85–101

  33. P. Juntunen, P. Karjalainen, D. Raabe, G. Bolle, and T. Kopio, Optimizing Continuous Annealing of Interstitial-Free Steels for Improving Deep Drawability, Metall. Mater. Trans. A Phys. Metall. Mater. Sci, 2001, 32(8), p 1989–1995

    Article  Google Scholar 

  34. D. Raabe, Texture of Strip Cast and Hot Rolled Ferritic and Austenitic Stainless Steel, Mater. Sci. Technol., 1995, 11(6), p 461–468

    Article  CAS  Google Scholar 

  35. D. Raabe, Texture and Microstructure Evolution During Cold Rolling of a Strip Cast and of a Hot Rolled Austenitic Stainless Steel, Acta Mater., 1997, 45(3), p 1137–1151

    Article  CAS  Google Scholar 

  36. J.I. Omale, E.G. Ohaeri, A.A. Tiamiyu, M. Eskandari, K.M. Mostafijur, and J.A. Szpunar, Microstructure, Texture Evolution and Mechanical Properties of X70 Pipeline Steel After Different Thermomechanical Treatments, Mater. Sci. Eng. A, 2017, 703(July), p 477–485

    Article  CAS  Google Scholar 

  37. J.I. Omale, E.G. Ohaeri, J.A. Szpunar, M. Arafin, and F. Fateh, Microstructure and Texture Evolution in Warm Rolled API 5L X70 Pipeline Steel for Sour Service Application, Mater. Charact., 2019, 147, p 453–463.

    Article  CAS  Google Scholar 

  38. W.B. Hutchinson, L. Ryde, and P.S. Bate, Transformation Textures in Steels, Mater. Sci. Forum, 2005, 495–497, p 1141–1150

    Article  Google Scholar 

  39. Y. He, S. Godet, and J.J. Jonas, Representation of Misorientations in Rodrigues-Frank Space: Application to the Bain, Kurdjumov-Sachs, Nishiyama-Wassermann and Pitsch Orientation Relationships in the Gibeon Meteorite, Acta Mater., 2005, 53(4), p 1179–1190

    Article  CAS  Google Scholar 

  40. M.N. Ei-ichi Furubayashi and H. Miyaji, Simple Model of Predicting the Transformation Textures in Thermomechanically Processed Steels, Trans. Iron Steel Inst. Jpn, 1987, 27(6), p 513–519

    Article  Google Scholar 

  41. E.O. Hall, The Deformation and Aging of Mild Steel, Proc. Phys. Soc. Sect. B, 1951, 64(9), p 747

    Article  Google Scholar 

  42. N. Hansen, Hall–Petch Relation and Boundary Strengthening, Scr. Mater., 2004, 51(8 SPEC. ISS.), p 801–806

    Article  CAS  Google Scholar 

  43. R. Shukla, S.K. Ghosh, D. Chakrabarti, and S. Chatterjee, Microstructure, Texture, Property Relationship in Thermo-Mechanically Processed Ultra-Low Carbon Microalloyed Steel for Pipeline Application, Mater. Sci. Eng. A, 2013, 587, p 201–208

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC strategic Grant: 470033). We also thank Evraz Inc. in Regina and CANMET, Natural Resources Canada, Hamilton, for the supply of steel samples and conducting all the thermomechanical treatments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. I. Omale.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omale, J.I., Ohaeri, E.G., Mostafijur, K.M. et al. Through-Thickness Inhomogeneity of Texture, Microstructure, and Mechanical Properties After Rough and Finish Rolling Treatments in Hot-Rolled API 5L X70 Pipeline Steel. J. of Materi Eng and Perform 29, 8130–8144 (2020). https://doi.org/10.1007/s11665-020-05280-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05280-0

Keywords

Navigation