Skip to main content
Log in

Modeling Vapor–Liquid Equilibria and Surface Tension of Carboxylic Acids + Water Mixtures Using Peng–Robinson Equation of State and Gradient Theory

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This work has been dedicated to modeling the vapor–liquid equilibria and surface tension of carboxylic acids + water mixtures at different temperatures. The Peng–Robinson equation of state with modified Huron–Vidal + Wilson mixing rule correctly models the vapor pressure and vapor mole fraction of these mixtures. The modified Huron–Vidal mixing rule was better than quadratic mixing rule to model the phase equilibria properties for the mixtures studied in this work. The parachor method and linear gradient theory were used to model the surface tension of these mixtures. Finally, a new symmetric parameter dependent on the liquid molar fraction and temperature was necessary to correctly adjust the surface tension of the carboxylic acids + water mixtures using linear gradient theory. The surface tension results obtained in this work are better than those published so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\({\mathbb {P}}\) :

Parachor parameter of the pure fluid

a :

Cohesion parameter in PR-EOS

A, B :

Coefficients of the influence parameter

AAD :

Statistical deviation

b :

Covolume parameter in PR-EOS

\(c_1\) :

Adjustable parameter in cohesive parameter

\(f_0\) :

Helmholtz energy density

G :

Gibbs free energy

\(k_{12}\) :

Binary interaction parameter of quadratic mixing rule

\(l_{12}\), \(m_{12}\), \(s_{12}\), \(s_{21}\) :

Coefficients of the correlation for the symmetric parameter

m :

Parameter of the thermal cohesive function

n :

Number of points

\(n_c\) :

Number of components

P :

Absolute pressure

R :

Universal gas constant

T :

Absolute temperature

u :

MHV function

x :

Liquid mole fraction

y :

Vapor mole fraction

z :

Position in the interface

\(\alpha (T)\) :

Thermal cohesive function

\(\beta _{12}\) :

Symmetric parameter

\(\gamma \) :

Coefficient activity

\(\kappa \) :

Influence parameter

\(\lambda _{12}\) :

Adjustable parameter of the parachor method

\(\Lambda _{12}\), \(\Lambda _{21}\) :

Wilson parameters

\(\mu \) :

Chemical potential

\(\Omega \) :

Grand thermodynamic potential

\(\omega \) :

Acentric factor

\(\rho \) :

Molar density

\(\sigma \) :

Surface tension

\(\xi \) :

MHV function

c :

Critical condition

ijs :

Species

0:

Equilibrium condition

E :

Excess

exp :

Experimental

L :

Liquid phase

theo :

Theoretical

V :

Vapor phase

References

  1. L.A. Román-Ramírez, G.A. Leeke, Int. J. Thermophys. 41, 1–27 (2020)

    Article  Google Scholar 

  2. K. Granados, J. Gracia-Fadrique, A. Amigo, R. Bravo, J. Chem. Eng. Data 51, 1356–1360 (2006)

    Article  Google Scholar 

  3. E. Álvarez, G. Vázquez, M. Sánchez-Vilas, B. Sanjurjo, J.M. Navaza, J. Chem. Eng. Data 42, 957–960 (1997)

    Article  Google Scholar 

  4. J.C. Eriksson, Adv. Chem. Phys., 145–174, 1964

  5. F.B. Sprow, J.M. Prausnitz, Trans. Faraday Soc. 62, 1105–1111 (1966)

    Article  Google Scholar 

  6. J.A. Hugill, A.J. Van Welsenes, Fluid Phase Equilib. 29, 383–390 (1986)

    Article  Google Scholar 

  7. J. Hekayati, S. Raeissi, J. Mol. Liq. 231, 451–461 (2017)

    Article  Google Scholar 

  8. X. Liang, M.L. Michelsen, G.M. Kontogeorgis, Fluid Phase Equilib. 428, 153–163 (2016)

    Article  Google Scholar 

  9. J.D. van der Waals, Zeit Phys Chem. 13, 675–725 (1894)

  10. J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 28, 258–267 (1958)

    Article  ADS  Google Scholar 

  11. A. Mejía, J.C. Pàmies, D. Duque, H. Segura, L.F. Vega, J. Chem. Phys. 123, 034505 (2005)

  12. A. Hernández, Chem. Phys., 110747, 2020

  13. A. Hernández, S. Khosharay, Int. J. Thermophys. 41, 1–22 (2020)

    Article  Google Scholar 

  14. Y.-X. Zuo, E.H. Stenby, J. Chem. Eng. Japan 29, 159–165 (1996)

    Article  Google Scholar 

  15. K.A.G. Schmidt, G.K. Folas, B. Kvamme, Fluid Phase Equilib. 261, 230–237 (2007)

    Article  Google Scholar 

  16. A. Hernández, M. Cartes, A. Mejía, Fuel 229, 105–115 (2018)

    Article  Google Scholar 

  17. A. Hernández, Int. J. Thermophys. 41, 1–18 (2020)

    Article  Google Scholar 

  18. D.Y. Peng, D.B. Robinson, Ind. Eng. Chem. Fundam. 15, 59–64 (1976)

    Article  Google Scholar 

  19. A. Anderko, Fluid Phase Equilib. 61, 145–225 (1990)

    Article  Google Scholar 

  20. M.L. Michelsen, Fluid Phase Equilib. 60, 47–58 (1990)

    Article  Google Scholar 

  21. G.M. Wilson, J. Am. Chem. Soc. 86, 127–130 (1964)

    Article  Google Scholar 

  22. D.B. Macleod, Trans. Faraday Soc. 19, 38–41 (1923)

    Article  Google Scholar 

  23. O.R. Quayle, Chem. Rev. 53, 439–589 (1953)

    Article  Google Scholar 

  24. A. Mejía, H. Segura, L. Vega, J. Wisniak, Fluid Phase Equilib. 227, 225–238 (2005)

    Article  Google Scholar 

  25. Y.-X. Zuo, E.H. Stenby, Can. J. Chem. Eng. 75, 1130–1137 (1997)

    Article  Google Scholar 

  26. Y.-X. Zuo, E.H. Stenby, J. Colloid Interface Sci. 182, 126–132 (1996)

    Article  ADS  Google Scholar 

  27. Y.-X. Zuo, E.H. Stenby, SPE J. 3, 134–145 (1998)

    Article  Google Scholar 

  28. J. Wisniak, A. Apelblat, H. Segura, Chem. Eng. Sci. 53, 743–751 (1998)

    Article  Google Scholar 

  29. H.C. Van Ness, Classical thermodynamics of non-electrolyte solutions (Elsevier, Amsterdam, 2015)

    Google Scholar 

  30. C. Miqueu, B. Mendiboure, A. Graciaa, J. Lachaise, Fluid Phase Equilib. 207, 225–246 (2003)

    Article  Google Scholar 

  31. A.N. Campbell, A.J.R. Campbell, Trans. Faraday Soc. 30, 1109–1114 (1934)

    Article  Google Scholar 

  32. T. Sommer, J. Trejbal, D. Kopecky, J. Chem. Eng. Data 61, 3398–3405 (2016)

    Article  Google Scholar 

  33. E.H.M. Wright, B.A. Akhtar, J. Chem. Soc. B, 151–157, 1970

  34. S. Miyamoto, S. Nakamura, Y. Iwai, Y. Arai, J. Chem. Eng. Data 46, 1225–1230 (2001)

    Article  Google Scholar 

  35. L.A. Román-Ramírez, G.A. Leeke, J. Chem. Eng. Data 61, 2078–2082 (2016)

    Article  Google Scholar 

  36. L.A. Román-Ramírez, F. García-Sánchez, R.C.D. Santos, G.A. Leeke, Fluid Phase Equilib. 388, 151–159 (2015)

    Article  Google Scholar 

  37. V.V. Udovenko, L.P. Aleksandrova, Zhurnal Fizicheskoi Khimii 34, 1366–1372 (1960)

    Google Scholar 

Download references

Acknowledgements

A.H. acknowledges the economic support given by the UCSC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel Hernández.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández, A. Modeling Vapor–Liquid Equilibria and Surface Tension of Carboxylic Acids + Water Mixtures Using Peng–Robinson Equation of State and Gradient Theory. Int J Thermophys 42, 13 (2021). https://doi.org/10.1007/s10765-020-02763-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02763-z

Keywords

Navigation