Skip to main content
Log in

Dust Ion Acoustic Solitary Waves in Unmagnetized Plasma with Kaniadakis Distributed Electrons

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The propagation of dust ion acoustic solitary waves (DIASWs) is investigated in dusty plasma with non-Maxwellian electrons. The Korteweg-de Vries (KdV) equation and modified Korteweg-de Vries (mKdV) equation are derived with the help of reductive perturbation method and their solitary wave solutions are analyzed. The effects of relevant parameters (viz., κ-deformed parameter and dust concentration μ) on the dynamics of solitary structures are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F.F. Chen. Introduction to Plasma Physics and Controlled Fusion Plasma Physics (Springer, New York, 1984)

    Book  Google Scholar 

  2. A.C. Scott (ed.), Encyclopedia of Nonlinear Science (Taylor & Francis, New York, 2005)

    MATH  Google Scholar 

  3. N.J. Zabusky, M.D. Kruskal, . Phy. Rev. Lett. 15, 240 (1965)

    Article  ADS  Google Scholar 

  4. A.P. Misra, C. Bhowmik, . Phys. Lett. A. 369, 90–97 (2007)

    Article  ADS  Google Scholar 

  5. H.R. Pakzad, . Phys. Lett. A. 373, 847–850 (2009)

    Article  ADS  Google Scholar 

  6. O.R. Rufai, R. Bharuthram, S.V. Singh, G.S. Lakhina, . Phys. Plasmas. 21, 082304 (2014)

    Article  ADS  Google Scholar 

  7. M. Ferdousi, S. Sultana, A.A. Mamun, . Phys. Plasmas. 22, 032117 (2015)

    Article  ADS  Google Scholar 

  8. M. Kakati, K.S. Goswami, . Phys. Plasmas. 5, 4508 (1998)

    Article  ADS  Google Scholar 

  9. P.K. Shukla, . Phys. Plasmas. 10, 1619 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  10. E.F. El-Shamy, . Chaos Solitons Fractals. 25, 665 (2005)

    Article  ADS  Google Scholar 

  11. X. Yang, C. Wang, C. Lu, J. Zhang, Y. Shi, . Phys. Plasmas. 19, 103705 (2012)

    Article  ADS  Google Scholar 

  12. H.R. Washimi, T. Taniuti, . Phys. Rev. Lett. 17, 996 (1966)

    Article  ADS  Google Scholar 

  13. T. Taniuti, . Suppl. Prog. Theor. Phys. 55, 1–35 (1974)

    Article  ADS  Google Scholar 

  14. R.A. Kraenkel, J.G. Pereira, M.A. Manna, . Acta Appl. Math. 39, 389–403 (1995)

    Article  MathSciNet  Google Scholar 

  15. H. Leblond, . J. Phys. B: At. Mol. Opt. Phys. 41, 043001 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. A. Rahman, M. Khalid, A. Zeb, . Braz. J. Phys. 49, 726 (2019)

    Article  ADS  Google Scholar 

  17. M. Khalid, A. Rahman, F. Hadi, A. Zeb, . Pramana—J. Phys. 92, 86 (2019)

    Article  ADS  Google Scholar 

  18. M. Khalid, A. Rahman, . Astrophys. Space Sci. 364, 28 (2019)

    Article  ADS  Google Scholar 

  19. G. Ullah, M. Saleem, M. Khan, M. Khalid, A. Rahman, S. Nabi, Contrib. Plasma Phys. e202000068 (2020). https://doi.org/10.1002/ctpp.202000068

  20. A. Rahman, M. Khalid, S.N. Naeem, E.A. Elghmaz, S.A. El-Tantawy, L.S. El-Sherif, . Phys. Lett. A. 384, 126257 (2020)

    Article  Google Scholar 

  21. M. Khalid, F. Hadi, A. Rahman, . J. Phys. Soc. Jpn. 88, 114501 (2019)

    Article  ADS  Google Scholar 

  22. G. Kaniadakis, . Physica A. 296, 405 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  23. C. Beck, E.G.D. Cohen, . Physica A. 322, 267 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  24. K. Ourabah, L.A. Gougam, M. Tribeche, . Phys. Rev. E. 91, 012133 (2015)

    Article  ADS  Google Scholar 

  25. G. Kaniadakis, . Phys. Rev. E. 66, 056125 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  26. A.M. Teweldeberhan, H.G. Miller, G. Tegen, . Int. J. Mod. Phys. E. 12, 669 (2003)

    Article  ADS  Google Scholar 

  27. A. Rossani, A.M. Scarfone, . J. Phys. A. 37, 4955 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  28. T.S. Biro, G. Kaniadakis, . Eur. Phys. J. B. 50, 3 (2006)

    Article  ADS  Google Scholar 

  29. K. Ourabah, M. Tribeche, . Phys. Rev. E. 89, 062130 (2014)

    Article  ADS  Google Scholar 

  30. K. Ourabah, A.H. Hamici-Bendimerad, M. Tribeche, . Phys. Scr. 90, 045101 (2015)

    Article  ADS  Google Scholar 

  31. L.A. Gougam, M. Tribeche, . Phys. Plasmas. 23, 014501 (2016)

    Article  ADS  Google Scholar 

  32. I. Lourek, M. Tribeche, . Physica A. 441, 215–220 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. A. Saha, J. Tamang, . Phys. Plasmas. 24, 082101 (2017)

    Article  ADS  Google Scholar 

  34. M. Khalid, S.A. El-Tantawi, A. Rahman, . Astrophy. Space Sci. 365, 75 (2020)

    Article  ADS  Google Scholar 

  35. N.S. Saini, P. Sethi, . Phys. Plasmas. 23, 103702 (2016)

    Article  ADS  Google Scholar 

  36. G. Lapenta, S. Markidis, A. Marocchino, G. Kaniadakis, . Astrophys. J. 666, 949 (2007)

    Article  ADS  Google Scholar 

  37. J.C. Carvalho, J.D. do Nascimento, R. Silva, J.R. de Medeiros, . Astrophys. J. Lett. 696, L48 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Khalid.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, M., Khan, A., Khan, M. et al. Dust Ion Acoustic Solitary Waves in Unmagnetized Plasma with Kaniadakis Distributed Electrons. Braz J Phys 51, 60–65 (2021). https://doi.org/10.1007/s13538-020-00807-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00807-1

Keywords

Navigation