Skip to main content
Log in

A Study on the LATIN-PGD Method: Analysis of Some Variants in the Light of the Latest Developments

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The LATIN-PGD method is a powerful alternative to the Newton–Raphson scheme for solving non-linear time-dependent problems in combination with reduced-order modeling methods. Many developments have been carried out over the last few decades and have led to some variants of the LATIN-PGD method. However, only few comparisons have been made between these variants and none using the digital resources now available. In this article, a comparison between the two major variants of the LATIN-PGD method, as well as with the Newton–Raphson one, is performed using a unified software which highlights the assets of the LATIN-PGD. Various test cases dealing with elasto-visco-plastic problems are undertaken, including comparison with commercial solvers, which reveals the interesting time saving in favor of the LATIN-PGD method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abdali A, Benkrid K, Bussy P (1996) Simulation of sheet cutting by the large time increment method. J Mater Process Technol 60(1):255–260. https://doi.org/10.1016/0924-0136(96)02339-4

    Article  Google Scholar 

  2. Alameddin S, Bhattacharyya M, Fau A, Nackenhorst U, Néron D, Ladevèze P (2017) Large time increment approach for fatigue damage computations. PAMM 17(1):231–232. https://doi.org/10.1002/pamm.201710085

    Article  MATH  Google Scholar 

  3. Alart P, Dureisseix D (2008) A scalable multiscale LATIN method adapted to nonsmooth discrete media. Comput Methods Appl Mech Eng 197(5):319–331. https://doi.org/10.1016/j.cma.2007.05.002

    Article  MATH  Google Scholar 

  4. Allix O, Ladevèze P (1992) Interlaminar interface modelling for the prediction of delamination. Compos Struct 22(4):235–242. https://doi.org/10.1016/0263-8223(92)90060-P

    Article  Google Scholar 

  5. Allix O, Ladevèze P, Gilletta D, Ohayon R (1989) A damage prediction method for composite structures. Int J Numer Methods Eng 27(2):271–283. https://doi.org/10.1002/nme.1620270205

    Article  MathSciNet  MATH  Google Scholar 

  6. Allix O, Vidal P (2002) A new multi-solution approach suitable for structural identification problems. Comput Methods Appl Mech Eng 191(25):2727–2758. https://doi.org/10.1016/S0045-7825(02)00211-6

    Article  MathSciNet  MATH  Google Scholar 

  7. Arzt M, Cognard JY, Ladevèze P (1992) An efficient computational method for complex loading histories. In: Owen D, Onãte E, Hinton E (eds) Proceedings of 3rd international conference on computational plasticity. Pineridge Press, Swansea, pp 225–236

    Google Scholar 

  8. Aubard X, Boucard PA, Ladevèze P, Michel S (2002) Modeling and simulation of damage in elastomer structures at high strains. Comput Struct 80(27):2289–2298. https://doi.org/10.1016/S0045-7949(02)00241-9

    Article  Google Scholar 

  9. Bellenger E, Bussy P (1998) Plastic and viscoplastic damage models with numerical treatment for metal forming processes. J Mater Process Technol 80–81:591–596. https://doi.org/10.1016/S0924-0136(98)00166-6

    Article  Google Scholar 

  10. Bellenger E, Bussy P (2001) Phenomenological modeling and numerical simulation of different modes of creep damage evolution. Int J Solids Struct 38(4):577–604. https://doi.org/10.1016/S0020-7683(00)00042-1

    Article  MATH  Google Scholar 

  11. Bhattacharyya M, Fau A, Nackenhorst U, Néron D, Ladevèze P (2018) A LATIN-based model reduction approach for the simulation of cycling damage. Comput Mech 62(4):725–743. https://doi.org/10.1007/s00466-017-1523-z

    Article  MathSciNet  MATH  Google Scholar 

  12. Bhattacharyya M, Fau A, Nackenhorst U, Néron D, Ladevèze P (2018) A multi-temporal scale model reduction approach for the computation of fatigue damage. Comput Methods Appl Mech Eng 340:630–656. https://doi.org/10.1016/j.cma.2018.06.004

    Article  MathSciNet  MATH  Google Scholar 

  13. Blanchard M, Allix O, Gosselet P, Desmeure G (2019) Space/time global/local noninvasive coupling strategy: application to viscoplastic structures. Finite Elem Anal Des 156:1–12. https://doi.org/10.1016/j.finel.2019.01.003

    Article  Google Scholar 

  14. Blanzé C, Champaney L, Cognard JY, Ladevèze P (1996) A modular approach to structure assembly computations: application to contact problems. Eng Comput 13(1):15–32. https://doi.org/10.1108/02644409610110976

    Article  MathSciNet  Google Scholar 

  15. Blanzé C, Champaney L, Vedrine P (2000) Contact problems in the design of a superconducting quadrupole prototype. Eng Comput 17(2):136–153. https://doi.org/10.1108/02644400010313093

    Article  MATH  Google Scholar 

  16. Blanzé C, Danwé R, Ladevèze P, Maurel P (1992) A new simplified method for the analysis of 2D structures. In: XXVIIIth international congress of theorical and applied mechanics

  17. Boisse P, Bussy P, Ladevèze P (1990) A new approach in non-linear mechanics: the large time increment method. Int J Numer Methods Eng 29(3):647–663. https://doi.org/10.1002/nme.1620290312

    Article  MATH  Google Scholar 

  18. Boisse P, Ladevèze P, Poss M, Rougee P (1991) A new large time increment algorithm for anisotropic plasticity. Int J Plast 7(1):65–77. https://doi.org/10.1016/0749-6419(91)90005-J

    Article  MATH  Google Scholar 

  19. Bonnet M, Frangi A (2006) Analyse Des Solides Déformables Par La Méthode Des Éléments Finis. Editions de l’Ecole Polytechnique

  20. Boucard PA, Buytet S, Guidault PA (2007) Une stratégie multi-échelle pour l’étude paramétrique de détails géométriques au sein de structures en contacts multiples. Eur J Comput Mech 16(8):1011–1036. https://doi.org/10.3166/remn.16.1011-1036

    Article  MATH  Google Scholar 

  21. Boucard PA, Champaney L (2003) A suitable computational strategy for the parametric analysis of problems with multiple contact. Int J Numer Methods Eng 57(9):1259–1281. https://doi.org/10.1002/nme.724

    Article  MATH  Google Scholar 

  22. Boucard PA, Dérumaux M, Ladevèze P, Roux P (2003) Macro-meso models for joint submitted to pyrotechnic shock. In: Bathe KJ (ed) Computational fluid and solid mechanics 2003. Elsevier, Oxford, pp 139–142. https://doi.org/10.1016/B978-008044046-0.50036-1

    Chapter  Google Scholar 

  23. Boucard PA, Ladevèze P (1999) Une application de la méthode LATIN au calcul multirésolution de structures non linéaires. Revue Européenne des Éléments Finis 8(8):903–920. https://doi.org/10.1080/12506559.1999.10511417

    Article  MATH  Google Scholar 

  24. Boucard PA, Ladevèze P, Poss M, Rougée P (1997) A nonincremental approach for large displacement problems. Comput Struct 64(1):499–508. https://doi.org/10.1016/S0045-7949(96)00165-4

    Article  MATH  Google Scholar 

  25. Boucard PA, Odièvre D, Gatuingt F (2011) A parallel and multiscale strategy for the parametric study of transient dynamic problems with friction. Int J Numer Methods Eng 88(7):657–672. https://doi.org/10.1002/nme.3194

    Article  MathSciNet  MATH  Google Scholar 

  26. Bouclier R, Louf F, Chamoin L (2013) Real-time validation of mechanical models coupling PGD and constitutive relation error. Comput Mech 52(4):861–883. https://doi.org/10.1007/s00466-013-0850-y

    Article  MathSciNet  MATH  Google Scholar 

  27. Bussy P, Rougée P, Vauchez P (1990) The large time increment method for numerical simulation of metal forming processes. In: NUMETA. Elsevier, pp 102–109

  28. Caignot A, Ladevèze P, Néron D, Durand JF (2010) Virtual testing for the prediction of damping in joints. Eng Comput 27(5):621–644. https://doi.org/10.1108/02644401011050912

    Article  Google Scholar 

  29. Capaldo M, Guidault PA, Néron D, Ladevèze P (2017) The Reference Point Method, a “hyperreduction” technique: application to PGD-based nonlinear model reduction. Comput Methods Appl Mech Eng 322:483–514. https://doi.org/10.1016/j.cma.2017.04.033

    Article  MathSciNet  MATH  Google Scholar 

  30. Chaboche JL (1986) Time-independent constitutive theories for cyclic plasticity. Int J Plast 2(2):149–188. https://doi.org/10.1016/0749-6419(86)90010-0

    Article  MATH  Google Scholar 

  31. Chaboche JL (1989) Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int J Plast 5(3):247–302. https://doi.org/10.1016/0749-6419(89)90015-6

    Article  MATH  Google Scholar 

  32. Champaney L, Cognard JY, Dureisseix D, Ladevèze P (1997) Large scale applications on parallel computers of a mixed domain decomposition method. Comput Mech 19(4):253–263. https://doi.org/10.1007/s004660050174

    Article  MATH  Google Scholar 

  33. Champaney L, Cognard JY, Ladevèze P (1999) Modular analysis of assemblages of three-dimensional structures with unilateral contact conditions. Comput Struct 73(1):249–266. https://doi.org/10.1016/S0045-7949(98)00285-5

    Article  MATH  Google Scholar 

  34. Chinesta F, Ladevèze P, Cueto E (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18(4):395. https://doi.org/10.1007/s11831-011-9064-7

    Article  Google Scholar 

  35. Chinesta F (ed) (2014) Separated representations and PGD-based model reduction: fundamentals and applications. No. 554 in courses and lectures/international centre for mechanical sciences. Springer, Wien

  36. Cognard JY, Dureisseix D, Ladevèze P, Lorong P (1996) Expérimentation d’une approche parallèle en calcul des structures. Revue Européenne des Éléments Finis 5(2):197–220. https://doi.org/10.1080/12506559.1996.10511217

    Article  MATH  Google Scholar 

  37. Cognard JY, Ladevèze P (1993) A large time increment approach for cyclic viscoplasticity. Int J Plast 9(2):141–157. https://doi.org/10.1016/0749-6419(93)90026-M

    Article  MATH  Google Scholar 

  38. Cognard J, Ladevèze P, Talbot P (1999) A large time increment approach for thermo-mechanical problems. Adv Eng Softw 30(9–11):583–593. https://doi.org/10.1016/S0965-9978(98)00120-3

    Article  Google Scholar 

  39. Cognard JY, Ladevèze P (1991) The large time increment method applied to cyclic loadings. In: Życzkowski M (ed) Creep in structures. Springer, Berlin, pp 555–562. https://doi.org/10.1007/978-3-642-84455-362

    Chapter  Google Scholar 

  40. de Borst R, Crisfield MA, Remmers JJC, Verhoosel CV (2012) Nonlinear finite element analysis of solids and structures. Wiley, New York

    Book  Google Scholar 

  41. Douchin B, Ladevèze P (2001) Mise en œuvre numérique d’un mésomodèle d’endommagement des stratifiés. Revue Européenne des Éléments Finis 10(2–4):473–487. https://doi.org/10.1080/12506559.2001.11869263

    Article  MATH  Google Scholar 

  42. Dureisseix D, Ladevèze P, Néron D, Schrefler B (2003) A multi-time-scale strategy for multiphysics problems: application to poroelasticity. Int J Multiscale Comput Eng. https://doi.org/10.1615/IntJMultCompEng.v1.i4.50

    Article  MATH  Google Scholar 

  43. Gaignebet Y (1996) Approche non incrémentale des calculs de chocs pour des structures viscoplastiques. Ph.D. thesis, Ecole Normale Supérieure de Cachan

  44. Germain P, Suquet P, Nguyen QS (1983) Continuum thermodynamics. ASME Trans Ser E J Appl Mech 50:1010

    Article  Google Scholar 

  45. Giacoma A, Dureisseix D, Gravouil A, Rochette M (2014) A multiscale large time increment/FAS algorithm with time-space model reduction for frictional contact problems. Int J Numer Methods Eng 97(3):207–230. https://doi.org/10.1002/nme.4590

    Article  MathSciNet  MATH  Google Scholar 

  46. Giacoma A, Dureisseix D, Gravouil A, Rochette M (2015) Toward an optimal a priori reduced basis strategy for frictional contact problems with LATIN solver. Comput Methods Appl Mech Eng 283:1357–1381. https://doi.org/10.1016/j.cma.2014.09.005

    Article  MathSciNet  MATH  Google Scholar 

  47. Givoli D, Bharali R, Sluys LJ (2017) LATIN: a new view and an extension to wave propagation in nonlinear media. Int J Numer Methods Eng 112(2):125–156. https://doi.org/10.1002/nme.5513

    Article  MathSciNet  Google Scholar 

  48. Guidault PA, Allix O, Champaney L, Cornuault C (2008) A multiscale extended finite element method for crack propagation. Comput Methods Appl Mech Eng 197(5):381–399. https://doi.org/10.1016/j.cma.2007.07.023

    Article  MATH  Google Scholar 

  49. Guinard S, Allix O, Guédra-Degeorges D, Vinet A (2002) A 3D damage analysis of low-velocity impacts on laminated composites. Compos Sci Technol 62(4):585–589. https://doi.org/10.1016/S0266-3538(01)00153-1

    Article  Google Scholar 

  50. Heyberger C, Boucard PA, Néron D (2013) A rational strategy for the resolution of parametrized problems in the PGD framework. Comput Methods Appl Mech Eng 259:40–49. https://doi.org/10.1016/j.cma.2013.03.002

    Article  MathSciNet  MATH  Google Scholar 

  51. Hu W, Thomson PF (1996) An evaluation of a large time increment method. Comput Struct 58(3):633–637. https://doi.org/10.1016/0045-7949(95)00149-B

    Article  MATH  Google Scholar 

  52. Jourdan F, Bussy P (2000) Large time increment method in dynamic regularization: sheet cutting simulations. Comput Methods Appl Mech Eng 190(8):1245–1259. https://doi.org/10.1016/S0045-7825(00)00161-4

    Article  MATH  Google Scholar 

  53. Kerfriden P, Allix O, Gosselet P (2009) A three-scale domain decomposition method for the 3D analysis of debonding in laminates. Comput Mech 44(3):343–362. https://doi.org/10.1007/s00466-009-0378-3

    Article  MATH  Google Scholar 

  54. Krempl E (1975) On the interaction of rate and history dependence in structural metals. Acta Mech 22(1):53–90. https://doi.org/10.1007/BF01170619

    Article  MATH  Google Scholar 

  55. Ladevèze P (1989) La méthode à grand incrément de temps pour l’analyse de structures à comportement non linéaire décrit par variables internes. Comptes Rendus de l’Académie des Sciences 309(2):1095–1999

    MathSciNet  MATH  Google Scholar 

  56. Ladevèze P (1999) Nonlinear computational structural mechanics: new approaches and non-incremental methods of calculation. Springer, New York

    Book  Google Scholar 

  57. Ladevèze P, Dureisseix D (1999) Une nouvelle stratégie de calcul micro/macro en mécanique des structures. Comptes Rendus de l’Académie des Sciences Ser IIB Mech Phys Astron 327(12):1237–1244. https://doi.org/10.1016/S1287-4620(00)88647-0

    Article  MATH  Google Scholar 

  58. Ladevèze P, Loiseau O, Dureisseix D (2001) A micro–macro and parallel computational strategy for highly heterogeneous structures. Int J Numer Methods Eng 52(1–2):121–138. https://doi.org/10.1002/nme.274

    Article  Google Scholar 

  59. Ladevèze P, Nouy A, Loiseau O (2002) A multiscale computational approach for contact problems. Comput Methods Appl Mech Eng 191(43):4869–4891. https://doi.org/10.1016/S0045-7825(02)00406-1

    Article  MathSciNet  MATH  Google Scholar 

  60. Ladevèze P, Néron D, Gerbaud PW (2019) Data-driven computation for history-dependent materials. Comptes Rendus Mécanique 347(11):831–844. https://doi.org/10.1016/j.crme.2019.11.008

    Article  Google Scholar 

  61. Ladevèze P, Perego U (2000) Duality preserving discretization of the large time increment methods. Comput Methods Appl Mech Eng 189(1):205–232. https://doi.org/10.1016/S0045-7825(99)00310-2

    Article  MathSciNet  MATH  Google Scholar 

  62. Ladevèze P (1985) Sur une famille d’algorithmes en mécanique des structures. Comptes-rendus des séances de l’Académie des sciences. Série 2, Mécanique-physique, chimie, sciences de l’univers, sciences de la terre 300(2):41–44

  63. Ladevèze P, Lorong P (1991) A large time increment approach with domain decomposition for mechanical non linear problem. In: Proceedings of the 10th international conference on computing methods in applied sciences and engineering on computing methods in applied sciences and engineering. Nova Science Publishers, Inc., Paris, France, pp 569–578

  64. Laurent L, Boucard PA, Soulier B (2013) A dedicated multiparametric strategy for the fast construction of a cokriging metamodel. Comput Struct 124:61–73. https://doi.org/10.1016/j.compstruc.2013.03.012

    Article  MATH  Google Scholar 

  65. Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139167970

    Book  MATH  Google Scholar 

  66. Lemaitre J, Chaboche JL, Benallal A, Desmorat R (2009) Mécanique des matériaux solides, 3e édition edn. Dunod, Paris

  67. Lemoussu H, Boucard PA, Ladevèze P (2002) A 3D shock computational strategy for real assembly and shock attenuator. Adv Eng Softw 33(7):517–526. https://doi.org/10.1016/S0965-9978(02)00074-1

    Article  Google Scholar 

  68. Liu B, Dapeng C, Yu L (1996) A non-incremental time-space algorithm for numerical simulation of forming process. Appl Math Mech 17(11):1021–1029. https://doi.org/10.1007/BF00119949

    Article  MATH  Google Scholar 

  69. Loiseau O, Ladevèze P, Dureisseix D (2002) Sur une stratégie de calcul multiéchelle pour l’analyse des structures composites. Revue Européenne des Éléments Finis 11(2–4):349–362. https://doi.org/10.3166/reef.11.349-362

    Article  MATH  Google Scholar 

  70. Nachar S, Boucard PA, Néron D, Bordeu F (2019) Coupling multi-fidelity kriging and model-order reduction for the construction of virtual charts. Comput Mech 10:10. https://doi.org/10.1007/s00466-019-01745-9

    Article  MathSciNet  MATH  Google Scholar 

  71. Nachar S (2019) Optimisation de structures viscoplastiques par couplage entre métamodèle multi-fidélité et modèles réduits. Ph.D. thesis, Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay

  72. Nasri MA, Robert C, Ammar A, El Arem S, Morel F (2018) Proper Generalized Decomposition (PGD) for the numerical simulation of polycrystalline aggregates under cyclic loading. Comptes Rendus Mécanique 346(2):132–151. https://doi.org/10.1016/j.crme.2017.11.009

    Article  Google Scholar 

  73. Nguyen HM, Allix O, Feissel P (2008) A robust identification strategy for rate-dependent models in dynamics. Inverse Prob 24(6):065006. https://doi.org/10.1088/0266-5611/24/6/065006

    Article  MathSciNet  MATH  Google Scholar 

  74. Nouy A, Ladevèze P (2004) Multiscale computational strategy with time and space homogenization: a radial-type approximation technique for solving microproblems. Int J Multiscale Comput Eng 2(4):10. https://doi.org/10.1615/IntJMultCompEng.v2.i4.40

    Article  Google Scholar 

  75. Néron D, Boucard PA, Relun N (2015) Time-space PGD for the rapid solution of 3D nonlinear parametrized problems in the many-query context. Int J Numer Methods Eng 103(4):275–292. https://doi.org/10.1002/nme.4893

    Article  MathSciNet  MATH  Google Scholar 

  76. Néron D, Dureisseix D (2008) A computational strategy for thermo-poroelastic structures with a time–space interface coupling. Int J Numer Methods Eng 75(9):1053–1084. https://doi.org/10.1002/nme.2283

    Article  MathSciNet  MATH  Google Scholar 

  77. Odièvre D, Boucard PA, Gatuingt F (2010) A parallel, multiscale domain decomposition method for the transient dynamic analysis of assemblies with friction. Comput Methods Appl Mech Eng 199(21):1297–1306. https://doi.org/10.1016/j.cma.2009.07.014

    Article  MathSciNet  MATH  Google Scholar 

  78. Oumaziz P, Gosselet P, Boucard PA, Guinard S (2017) A non-invasive implementation of a mixed domain decomposition method for frictional contact problems. Comput Mech 60(5):797–812. https://doi.org/10.1007/s00466-017-1444-x

    Article  MathSciNet  MATH  Google Scholar 

  79. Passieux JC, Ladevèze P, Néron D (2010) A scalable time–space multiscale domain decomposition method: Adaptive time scale separation. Comput Mech 46(4):621–633. https://doi.org/10.1007/s00466-010-0504-2

    Article  MathSciNet  MATH  Google Scholar 

  80. Pelle JP, Ryckelynck D (2000) An efficient adaptive strategy to master the global quality of viscoplastic analysis. Comput Struct 78(1):169–183. https://doi.org/10.1016/S0045-7949(00)00107-3

    Article  Google Scholar 

  81. Relun N, Néron D, Boucard PA (2011) Multiscale elastic-viscoplastic computational analysis. Eur J Comput Mech 20(7–8):379–409. https://doi.org/10.3166/ejcm.20.379-409

    Article  MATH  Google Scholar 

  82. Relun N, Néron D, Boucard PA (2013) A model reduction technique based on the PGD for elastic-viscoplastic computational analysis. Comput Mech 51(1):83–92. https://doi.org/10.1007/s00466-012-0706-x

    Article  MathSciNet  MATH  Google Scholar 

  83. Ribeaucourt R, Baietto-Dubourg MC, Gravouil A (2007) A new fatigue frictional contact crack propagation model with the coupled X-FEM/LATIN method. Comput Methods Appl Mech Eng 196(33):3230–3247. https://doi.org/10.1016/j.cma.2007.03.004

    Article  MathSciNet  MATH  Google Scholar 

  84. Roulet V, Boucard PA, Champaney L (2013) An efficient computational strategy for composite laminates assemblies including variability. Int J Solids Struct 50(18):2749–2757. https://doi.org/10.1016/j.ijsolstr.2013.04.028

    Article  Google Scholar 

  85. Royer C (1990) Une Approche des problèmes de dynamique non-lineaires par la méthode à grand incrément de temps. Ph.D. thesis, Université Pierre et Marie Curie - Paris 6

  86. Saavedra K, Allix O, Gosselet P, Hinojosa J, Viard A (2017) An enhanced nonlinear multi-scale strategy for the simulation of buckling and delamination on 3D composite plates. Comput Methods Appl Mech Eng 317:952–969. https://doi.org/10.1016/j.cma.2017.01.015

    Article  MathSciNet  MATH  Google Scholar 

  87. Sen Gupta J, Allix O, Boucard PA, Fanget A (2006) Mesodynamics of a 3D C/C: a dedicated numerical strategy. Comput Struct 84(19):1177–1189. https://doi.org/10.1016/j.compstruc.2006.01.018

    Article  Google Scholar 

  88. Stehly M, Remond Y (2002) On numerical simulation of cyclic viscoplastic and viscoelastic constitutive laws with the large time increment method. Mech Time-Depend Mater 6(2):147–170. https://doi.org/10.1023/A:1015048101798

    Article  Google Scholar 

  89. Trovalet M, Ladevèze P, Lubineau G (2009) A micro model for analysis of laminated composites, improvement and illustrations. In: Lamon POEJ (ed) JNC 16. AMAC, France, pp 1–9 (in French)

    Google Scholar 

  90. Vandoren B, De Proft K, Simone A, Sluys L (2013) A novel constrained LArge Time INcrement method for modelling quasi-brittle failure. Comput Methods Appl Mech Eng 265:148–162. https://doi.org/10.1016/j.cma.2013.06.005

    Article  MathSciNet  MATH  Google Scholar 

  91. Violeau D, Ladevèze P, Lubineau G (2009) Micromodel-based simulations for laminated composites. Compos Sci Technol 69(9):1364–1371. https://doi.org/10.1016/j.compscitech.2008.09.041

    Article  MATH  Google Scholar 

  92. Vitse M, Néron D, Boucard PA (2019) Dealing with a nonlinear material behavior and its variability through PGD models: application to reinforced concrete structures. Finite Elem Anal Des 153:22–37. https://doi.org/10.1016/j.finel.2018.05.006

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Scanff.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Major Contributors to the Developments of the LATIN Method

Appendix: Major Contributors to the Developments of the LATIN Method

Scope

LATIN version

Search directions

References

Features

MS

MP

PGD

\({\varvec{\Theta }}^{+}\)

\({\varvec{\Theta }}^{-}\)

Large deformation

\({\mathcal {F}}\)

\(\infty\)

\(\mathrm {T}_{\widehat{\varvec{s}}}\,( {\Gamma })\)

[27]

Plasticity

  

\(\checkmark\)

\(\alpha \varvec{{\mathcal {K}}}\)

\(\alpha \varvec{{\mathcal {K}}}\)

[68]

Forming process

  

\(\checkmark\)

\(\infty\)

\(\alpha \varvec{{\mathcal {K}}}\)

[1]

Contact friction, sheet cutting

  

\(\checkmark\)

[9]

Visco-plasticity, damage

  

\(\checkmark\)

[10]

Creep damage

  

\(\checkmark\)

\(\mathcal {IV}\)

\(\infty\)

\(\alpha \varvec{{\mathcal {K}}}\)

[24]

Beam buckling

  

\(\checkmark\)

[8]

Elastomers damage

  

Elasto-visco-plasticity, large number of cycles, fatigue, damage, quasi-brittle materials

\({\mathcal {F}}\)

\(\mathrm {T}_{\widehat{\varvec{s}}}\,( {\Gamma })\)

\(\mathrm {T}_{\widehat{\varvec{s}}}\,( {\Gamma })\)

[62]

Reference work

  

\(\checkmark\)

[17, 18]

   

\(\checkmark\)

[39]

\(\mathcal {VI}\) premises

  

\(\checkmark\)

[51]

   

\(\checkmark\)

\(\infty\)

\(\alpha \varvec{{\mathcal {K}}}\)

[90]

Snap-backs

   

\(\mathcal {IV}\)

\(\mathrm {T}_{\widehat{\varvec{s}}}\,( {\Gamma })\)

\(\mathrm {T}_{\widehat{\varvec{s}}}\,( {\Gamma })\)

[7, 37]

   

\(\checkmark\)

[56]

Reference work

  

\(\checkmark\)

[61]

Generalized variables

   

\(\infty\)

\(\mathrm {T}_{\widehat{\varvec{s}}}\,( {\Gamma })\)

[23]

Buckling

 

\(\checkmark\)

\(\checkmark\)

[38]

Thermo-mechanical

  

\(\checkmark\)

[80]

Verification

  

\(\checkmark\)

[82]

   

\(\checkmark\)

[75]

  

\(\checkmark\)

\(\checkmark\)

[11]

Cyclic damage

  

\(\checkmark\)

\(\varvec{{\widehat{{\varvec{\varepsilon }}}}} = \varvec{{\varvec{\varepsilon }}}_{n_{\ell }}\)

\(\mathrm {T}_{\widehat{\varvec{s}}}\,( {\Gamma })\)

[71]

Multi-fidelity kriging

 

\(\checkmark\)

\(\checkmark\)

\(\alpha \varvec{{\mathcal {K}}}\)

\(\alpha \varvec{{\mathcal {K}}}\)

[92]

Concrete damage

 

\(\checkmark\)

\(\checkmark\)

\(\mathcal {DDM}\)

  

[56]

    
  

[79]

MS in space & time

\(\checkmark\)

 

\(\checkmark\)

Thermal

\({\mathcal {F}}\)

\(\mathrm {T}_{\widehat{\varvec{s}}}\,( {\Gamma })\)

\(\mathrm {T}_{\widehat{\varvec{s}}}\,( {\Gamma })\)

[50]

Optimal MP

 

\(\checkmark\)

\(\checkmark\)

Non-linear dynamics, fast dynamics, shocks, wave propagation

\({\mathcal {F}}\)

\(\varvec{{\mathcal {K}}}\)

\(\varvec{{\mathcal {K}}}\)

[85]

   

\(\checkmark\)

\(\infty\)

\(\varvec{{\mathcal {K}}}\)

[52]

Sheet cutting

  

\(\checkmark\)

\(\infty\)

\(\mathrm {T}_{\widehat{\varvec{s}}}\,( {\Gamma })\)

[47]

Causality principle

   

\(\mathcal {IV}\)

\(\infty\)

\(\mathrm {T}_{\widehat{\varvec{s}}}\,( {\Gamma })\)

[43]

Visco-plasticity

  

\(\checkmark\)

\(\mathcal {DDM}\)

  

[67]

Assembly

   
  

[22]

   
  

[87]

Composite damage

   
  

[77]

 

\(\checkmark\)

\(\checkmark\)

 
  

[25]

Frictional contact

\(\checkmark\)

\(\checkmark\)

 

Composite damage

\({\mathcal {F}}\)

\(\infty\)

\(\varvec{{\mathcal {K}}}\)

[5]

   

\(\checkmark\)

[4]

   

\(\checkmark\)

[49]

    

\(\mathcal {IV}\)

\(\infty\)

\(\mathrm {T}_{\widehat{\varvec{s}}}\,( {\Gamma })\)

[41]

    

\(\mathcal {DDM}\)

  

[53, 89, 91]

 

\(\checkmark\)

  
  

[84]

Assembly

\(\checkmark\)

\(\checkmark\)

 
  

[86]

Buckling

\(\checkmark\)

  

Inverse problems, identification

\(\mathcal {IV}\)

\(\infty\)

\(\mathrm {T}_{\widehat{\varvec{s}}}\,( {\Gamma })\)

[6]

   

\(\checkmark\)

[73]

Visco-plasticity, damage

   

Assembly, frictional contact, parallelism, cracking

\(\mathcal {DDM}\)

  

[63]

    
  

[16]

2D-axisymmetrical

   
  

[36]

    
  

[33]

3D

   
  

[57]

 

\(\checkmark\)

  
  

[15]

    
  

[58]

    
  

[69]

Composite

\(\checkmark\)

  
  

[21]

  

\(\checkmark\)

 
  

[74]

Visco-plasticity, damage

\(\checkmark\)

  
  

[20]

Optimization

   
  

[48]

XFem

\(\checkmark\)

  
  

[3]

Discrete systems

\(\checkmark\)

  
  

[28]

Damping

\(\checkmark\)

  
  

[45]

POD & MG-FAS

 

\(\checkmark\)

 
  

[29]

Hyper-reduction RPM

\(\checkmark\)

 

\(\checkmark\)

  

[78]

Non-intrusive

\(\checkmark\)

  

Multi-physics

\(\mathcal {DDM}\)

  

[42, 76]

Poro-elasticity

\(\checkmark\)

 

\(\checkmark\)

  1. MS multi-scale, MP multi-parametric, \(\mathrm {T}_{\widehat{\varvec{s}}}\,({\Gamma })\) search direction related to tangential operator

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scanff, R., Nachar, S., Boucard, P.A. et al. A Study on the LATIN-PGD Method: Analysis of Some Variants in the Light of the Latest Developments. Arch Computat Methods Eng 28, 3457–3473 (2021). https://doi.org/10.1007/s11831-020-09514-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-020-09514-1

Navigation