Skip to main content

Advertisement

Log in

Microstructure evolution and property analysis of commercial pure Al alloy processed by radial-shear rolling

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The features of microstructure formation and properties of commercial pure aluminum alloy (Al 99.5%) obtained by radial-shear rolling (RSR) method at the different heating temperatures of 25, 200, 250, 300 and 350 °C were examined. In this paper, the rods with diameter of 14 mm were obtained from initial billet with diameter of 60 mm in five passes. The microstructure analysis with electron backscatter diffraction (EBSD), measurements of microhardness HV over cross-section, and tension test for determination of mechanical properties were carried out for these rods. The FEM simulation of RSR process and calculation of Zener–Hollomon parameter (Z) were carried out with Software QFORM. The obtained rods have the gradient microstructure typical of RSR characterized by surface layer with ultrafine grain structure (UFG) and grain size from 0.3 to 5 µm. In the central part of rod, the fiber deformed structure with minimal fraction of recrystallized grains (< 5%) is formed. This combination is optimal for simultaneous achievement of high strength (UTS ~ 107–110 MPa; YS ~ 100–109 MPa; ~ 35–40 HV) and ductility (El ~ 15–30%). The most intensive growth of plastic properties is observed at rolling temperatures close to the temperature of the onset of recrystallization, it is associated with additional deformational heating of surface layers and the formation of partially recrystallized structure. The obtained distribution dependences of average size of dynamic recrystallized grain on Zener–Hollomon parameter showed that the decrease in parameter Z leads to the increase in size of recrystallized grain for RSR process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Beletsky VM, Krivov GA. Aluminium alloys (Composition, properties, technology, application). Reference book. Kiev: "COMINTEH". 2005.

  2. Totten GE, MacKenzie DS. Handbook of aluminium. Vol. 1. Physical metallurgy and processes. New York: Marcel Dekker Inc; 2003.

    Book  Google Scholar 

  3. Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, Miller WS. Recent developments in aluminum alloys for aerospace applications. Mater Sci Eng A. 2000. https://doi.org/10.1016/S0921-5093(99)00674-7.

    Article  Google Scholar 

  4. Williams JC, Starke EA. Progress in structural materials for aerospace systems. Acta Mater. 2003. https://doi.org/10.1016/j.actamat.2003.08.023.

    Article  Google Scholar 

  5. Sheremet’ev VA, Kudryashova AA, Dinh XT, Galkin SP, Prokoshkin SD, Brailovskii V. Advanced technology for preparing bar from medical grade Ti-Zr-Nb superelastic alloy based on combination of radial-shear rolling and rotary forging. Metallurgist. 2019. https://doi.org/10.1007/s11015-019-00793-z.

    Article  Google Scholar 

  6. Skripalenko MM, Galkin SP, Karpov BV, Romantsev BA, Kaputkina LM, Danilin AV, Skripalenko MN, Patrin PV. Forming features and properties of titanium alloy billets after radial-shear rolling. Materials. 2019. https://doi.org/10.3390/ma12193179.

    Article  Google Scholar 

  7. Mashekov SA, Smailova GA, Alshynova AM, Uderbayeva AE, Sembaev NS, Zhauyt A. Structure formation of aluminum alloy D16 while rolling bars in the radial shear mill. Metalurgija. 2020;59:195–8.

    Google Scholar 

  8. Naizabekov A, Arbuz A, Lezhnev S, Panin E, Volokitina I. The development and testing of a new method of qualitative analysis of the microstructure quality, for example of steel AISI 321 subjected to radial shear rolling. Phys Scr. 2019. https://doi.org/10.1088/1402-4896/ab1e6e.

    Article  Google Scholar 

  9. Galkin SP, Romantsev BA, Ta DX, Gamin YV. Resource-saving technology for production of round bars from used shaft of rolling railroad stock. Chernye Metally. 2018;4:20–7.

    Google Scholar 

  10. Negodin DA, Galkin SP, Kharitonov EA, Karpov BV, Khar’kovskii DN, Dubovitskaya IA, Patrin PV. Testing of the technology of radial-shear rolling and predesigning selection of rolling minimills for the adaptable production of titanium rods with small cross sections under the conditions of the “CHMP” JSC. Metallurgist. 2019. https://doi.org/10.1007/s11015-019-00765-3.

    Article  Google Scholar 

  11. Skripalenko MM, Romantsev BA, Kaputkina LM, Galkin SP, Skripalenko MN, Cheverikin VV. Study of transient and steady-state stages during two-high and three-high screw rolling of a 12Kh18N10T steel workpiece. Metallurgist. 2019. https://doi.org/10.1007/s11015-019-00832-9.

    Article  Google Scholar 

  12. Karpov BV, Patrin PV, Galkin SP, Kharitonov EA, Karpov IB. Radial-shear rolling of titanium alloy VT-8 bars with controlled structure for small diameter ingots (≤200 mm). Metallurgist. 2018. https://doi.org/10.1007/s11015-018-0581-6.

    Article  Google Scholar 

  13. Romancev BA, Goncharuk AV, Aleshchenko AS, Gamin YV. Production of hollow thick-walled profiles and pipes made of titanium alloys by screw rolling. Russ J Non-ferrous Metals. 2015. https://doi.org/10.3103/S1067821215050132.

    Article  Google Scholar 

  14. Sheremetyev V, Kudryashova A, Cheverikin V, Korotitskiy A, Galkin S, Prokoshkin S, Brailovski V. Hot radial shear rolling and rotary forging of metastable beta Ti-18Zr-14Nb (at. %) alloy for bone implants: microstructure, texture and functional properties. J Alloy Compd. 2019. https://doi.org/10.1016/j.jallcom.2019.06.041.

    Article  Google Scholar 

  15. Dobatkin S, Galkin S, Estrin Y, Serebryany V, Diez M, Martynenko N, Lukyanova E, Perezhogin V. Grain refinement, texture, and mechanical properties of a magnesium alloy after radial-shear rolling. J Alloy Compd. 2019. https://doi.org/10.1016/j.jallcom.2018.09.065.

    Article  Google Scholar 

  16. Akopyan TK, Belov NA, Aleshchenko AS, Galkin SP, Gamin YV, Gorshenkov MV, Cheverikin VV, Shurkin PK. Formation of the gradient microstructure of a new Al alloy based on the Al-Zn-Mg-Fe-Ni system processed by radial-shear rolling. Mater Sci Eng A. 2019. https://doi.org/10.1016/j.msea.2019.01.029.

    Article  Google Scholar 

  17. Gamin Y, Akopyan T, Koshmin A, Dolbachev A, Aleshchenko A, Galkin SP, Romantsev BA. Investigation of the microstructure evolution and properties of A1050 aluminum alloy during radial-shear rolling using FEM analysis. Int J Adv Manuf Technol. 2020. https://doi.org/10.1007/s00170-020-05227-8.

    Article  Google Scholar 

  18. Akopyan TK, Gamin YV, Galkin SP, Prosviryakov AS, Aleshchenko AS, Noshin MA, Koshmin AN, Fomin AV. Radial-shear rolling of high-strength aluminum alloys: Finite element simulation and analysis of microstructure and mechanical properties. Mater Sci Eng A. 2020. https://doi.org/10.1016/j.msea.2020.139424.

    Article  Google Scholar 

  19. Gamin YV, Romantsev BA, Pashkov AN, Patrin PV, Bystrov IA, Fomin AV, Kadach MV. Obtaining hollow semifinished products based on copper alloys for electrical purposes by means of screw rolling. Russ J Non-ferrous Metals. 2020. https://doi.org/10.3103/S1067821220020054.

    Article  Google Scholar 

  20. Ding XF, Shuang YH, Liu QZ, Zhao CJ. New rotary piercing process for an AZ31 magnesium alloy seamless tube. Mater Sci Technol. 2018. https://doi.org/10.1080/02670836.2017.1393998.

    Article  Google Scholar 

  21. Aleshchenko AS, Gamin YV, Chan BK, Tsyutsyura VY. Wear features of working tools during piercing of high-temperature alloys. Chernye Metally. 2018;8:63–70.

    Google Scholar 

  22. Shatalov RL, Medvedev VA. Effect of deformed workpiece temperature inhomogeneity on mechanical properties of thin-walled steel vessels during treatment in a rolling and pressing line. Metallurgist. 2019. https://doi.org/10.1007/s11015-019-00807-w.

    Article  Google Scholar 

  23. Romantsev BA, Gamin YV, Goncharuk AV, Aleshchenko AS. Innovative equipment for producing cost-effective hollow billets for mechanical-engineering parts of small diameter. Metallurgist. 2017. https://doi.org/10.1007/s11015-017-0480-2.

    Article  Google Scholar 

  24. Quan GZ. Characterization for dynamic recrystallization kinetics based on stress-strain curves. In: Wilson P, editor. Recent developments in the study of recrystallization. London: IntechOpen; 2012. https://doi.org/10.5772/54285

    Chapter  Google Scholar 

  25. Gourdet S, Montheillet F. A model of continuous dynamic recrystallization. Acta Mater. 2003. https://doi.org/10.1016/S1359-6454(03)00078-8.

    Article  Google Scholar 

  26. Gourdet S, Montheillet F. An experimental study of the recrystallization mechanism during hot deformation of aluminium. Mater Sci Eng A. 2000. https://doi.org/10.1016/S0921-5093(00)00733-4.

    Article  Google Scholar 

  27. Talamantes-Silva J, Abbod MF, Cabrera ESP, Howard IC, Beynon JH, Sellars CM, Linkens DA. Microstructure modelling of hot deformation of Al-1%Mg alloy. Mater Sci Eng A. 2009. https://doi.org/10.1016/j.msea.2009.06.046.

    Article  Google Scholar 

  28. Hallberg H. Influence of process parameters on grain refinement in AA1050 aluminum during cold rolling. Int J Mech Sci. 2013. https://doi.org/10.1016/j.ijmecsci.2012.11.016.

    Article  Google Scholar 

  29. Sun ZC, Wu HL, Cao J, Yin ZK. Modeling of continuous dynamic recrystallization of Al-Zn-Cu-Mg alloy during hot deformation based on the internal-state-variable (ISV) method. Int J Plast. 2018. https://doi.org/10.1016/j.ijplas.2018.03.002.

    Article  Google Scholar 

  30. Doherty RD, Hughes DA, Humphreys FJ, Jonas JJ, Juul Jensen D, Kassner ME, King WE, McNelley TR, McQueen HJ, Rollett AD. Current issues in recrystallization: a review. Mater Sci Eng A. 1997. https://doi.org/10.1016/S0921-5093(97)00424-3.

    Article  Google Scholar 

  31. Roy RK. Recrystallization behavior of commercial purity aluminium alloys. In: Monteiro WA, editor. Light metal alloys applications. London: IntechOpen; 2013. https://doi.org/10.5772/58385

    Chapter  Google Scholar 

  32. Huang K, Logé RE. A review of dynamic recrystallization phenomena in metallic materials. Mater Des. 2016. https://doi.org/10.1016/j.matdes.2016.09.012.

    Article  Google Scholar 

  33. Ji H, Cai Z, Pei W, Huang X, Lu Y. DRX behavior and microstructure evolution of 33Cr23Ni8Mn3N: experiment and finite element simulation. J Mater Res Technol. 2020. https://doi.org/10.1016/j.jmrt.2020.02.059.

    Article  Google Scholar 

Download references

Funding

The research was supported by Russian Science Foundation (project No. 19-79-00054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Koshmin.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamin, Y.V., Akopyan, T.K., Koshmin, A.N. et al. Microstructure evolution and property analysis of commercial pure Al alloy processed by radial-shear rolling. Archiv.Civ.Mech.Eng 20, 143 (2020). https://doi.org/10.1007/s43452-020-00143-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-020-00143-w

Keywords

Navigation