Skip to main content
Log in

Enhanced Electrical Conductivity and Interlaminar Fracture Toughness of CF/EP Composites via Interleaving Conductive Thermoplastic Films

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The poor electrical conductivity and interlaminar fracture toughness of carbon fiber reinforced epoxy (CF/EP) composites could reduce their reliability for aerospace applications. In this work, multi-walled carbon nanotubes (MWCNTs) doped polyethersulfone (PES) conductive thermoplastic films (CTFs) were prepared by solution casting method. The as-obtained composites were then interleaved into CF/EP prepregs to yield composite laminates. The effects of CTFs on the electrical conductivity and interlaminar fracture toughness of the as-prepared CF/EP composites were investigated. The results suggested an increase in conductivity of laminates by 104% and 84% in the transverse (Y) and through-thickness (Z) directions, respectively. The Mode I and Mode II interlaminar fracture toughness values were evaluated by double cantilever beam (DCB) and end-notched flexure (ENF) testing. The data revealed that the introduction of CTFs with 10wt% MWCNTs led to enhancement in Mode I and Mode II interlaminar fracture toughness of Composite laminates by 206% and 47%, respectively. The failure mechanism was investigated through microstructural and morphological changes in the composites studied by scanning electron microscopy (SEM). This work provides valuable guidance for the simultaneous enhancement of electrical conductivity and interlaminar fracture toughness of CF/EP composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Katnam, K.B., Da Silva, L.F.M., Young, T.M.: Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities. Prog. Aeronaut. Sci. 61, 26–42 (2013). https://doi.org/10.1016/j.paerosci.2013.03.003

    Article  Google Scholar 

  2. Kersiene, N., Raslavicius, L., Kersys, A., Kazys, R., Zukauskas, E.: Energo-Mechanical Evaluation of Damage Growth and Fracture Initiation in Aviation Composite Structures. Polym. Plast. Technol. Eng. 55(11), 1137–1144 (2016). https://doi.org/10.1080/03602559.2015.1132452

    Article  CAS  Google Scholar 

  3. Zhang, D., Ye, L., Deng, S., Zhang, J., Tang, Y., Chen, Y.: CF/EP composite laminates with carbon black and copper chloride for improved electrical conductivity and interlaminar fracture toughness. Compos. Sci. Technol. 72(3), 412–420 (2012). https://doi.org/10.1016/j.compscitech.2011.12.002

    Article  CAS  Google Scholar 

  4. Guo, M., Yi, X., Liu, G., Liu, L.: Simultaneously increasing the electrical conductivity and fracture toughness of carbon-fiber composites by using silver nanowires-loaded interleaves. Compos. Sci. Technol. 97, 27–33 (2014). https://doi.org/10.1016/j.compscitech.2014.03.020

    Article  CAS  Google Scholar 

  5. Guo, M., Yi, X.: The production of tough, electrically conductive carbon fiber composite laminates for use in airframes. Carbon 58, 241–244 (2013). https://doi.org/10.1016/j.carbon.2013.02.052

    Article  CAS  Google Scholar 

  6. Li, Y., Zhang, H., Porwal, H., Huang, Z., Bilotti, E., Peijs, T.: Mechanical, electrical and thermal properties of in-situ exfoliated graphene/epoxy nanocomposites. Compos. Part A: Appl. Sci. 95, 229–236 (2017). https://doi.org/10.1016/j.compositesa.2017.01.007

    Article  CAS  Google Scholar 

  7. Garcia, E.J., Wardle, B.L., Hart, A.J., Yamamoto, N.: Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown In Situ. Compos. Sci. Technol. 68(9), 2034–2041 (2008). https://doi.org/10.1016/j.compscitech.2008.02.028

    Article  CAS  Google Scholar 

  8. Thostenson, E., Ren, Z., Chou, T.-W.: Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review. Compos. Sci. Technol. 61(13), 1899–1912 (2001). https://doi.org/10.1016/S0266-3538(01)00094-X

    Article  CAS  Google Scholar 

  9. Xiang, D., Wang, L., Tang, Y., Zhao, C., Harkin-Jones, E., Li, Y.: Effect of phase transitions on the electrical properties of polymer/carbon nanotube and polymer/graphene nanoplatelet composites with different conductive network structures. Polym. Int. 67(2), 227–235 (2018). https://doi.org/10.1002/pi.5502

    Article  CAS  Google Scholar 

  10. Xiang, D., Guo, J., Kumar, A., Chen, B., Harkin-Jones, E.: Effect of processing conditions on the structure, electrical and mechanical properties of melt mixed high density polyethylene/multi-walled CNT composites in compression molding. Mater. Test. 59(2), 136–147 (2017). https://doi.org/10.3139/120.110974

    Article  CAS  Google Scholar 

  11. Chou, T.-W., Gao, L., Thostenson, E.T., Zhang, Z., Byun, J.-H.: An assessment of the science and technology of carbon nanotube-based fibers and composites. Compos. Sci. Technol. 70(1), 1–19 (2010). https://doi.org/10.1016/j.compscitech.2009.10.004

    Article  CAS  Google Scholar 

  12. Kim, Y., Shin, T., Choi, H., Kwon, J., Chung, Y.-C., Yoon, H.: Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 43, 23–30 (2005). https://doi.org/10.1016/j.carbon.2004.08.015

    Article  CAS  Google Scholar 

  13. Garnier, C., Pastor, M.-L., Eyma, F., Lorrain, B.: The detection of aeronautical defects in situ on composite structures using Non Destructive Testing. Compos. Struct. 93(5), 1328–1336 (2011). https://doi.org/10.1016/j.compstruct.2010.10.017

    Article  Google Scholar 

  14. Baker, A., Gunnion, A.J., Wang, J.: On the Certification of Bonded Repairs to Primary Composite Aircraft Components. J. Adhes. 91(1–2), 4–38 (2015). https://doi.org/10.1080/00218464.2014.883315

    Article  CAS  Google Scholar 

  15. Kostopoulos, V., Baltopoulos, A., Karapappas, P., Vavouliotis, A., Paipetis, A.: Impact and after-impact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes. Compos. Sci. Technol. 70(4), 553–563 (2010). https://doi.org/10.1016/j.compscitech.2009.11.023

    Article  CAS  Google Scholar 

  16. Garg, A.C.: Delamination—a damage mode in composite structures. Eng. Fract. Mech. 29(5), 557–584 (1988). https://doi.org/10.1016/0013-7944(88)90181-6

    Article  Google Scholar 

  17. Sela, N., Ishai, O.: Interlaminar fracture toughness and toughening of laminated composite materials: a review. Compos. 20(5), 423–435 (1989). https://doi.org/10.1016/0010-4361(89)90211-5

    Article  CAS  Google Scholar 

  18. Hojo, M., Ando, T., Tanaka, M., Adachi, T., Shojiro, O., Endo, Y.: Modes I and II interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf. Int. J. Fatigue. 28(10), 1154–1165 (2006). https://doi.org/10.1016/j.ijfatigue.2006.02.004

    Article  CAS  Google Scholar 

  19. Yan, W., Liu, H.-Y., Mai, Y.W.: Numerical study on the mode I delamination toughness of Z-pinned laminates. Compos. Sci. Technol. 63(10), 1481–1493 (2003). https://doi.org/10.1016/S0266-3538(03)00167-2

    Article  Google Scholar 

  20. Jain, L., Mai, Y.W.: Determination of mode II delamination toughness of stitched laminated composites. Compos. Sci. Technol. 55(3), 241–253 (1995). https://doi.org/10.1016/0266-3538(95)00089-5

    Article  Google Scholar 

  21. Tanzawa, Y., Watanabe, N., Ishikawa, T.: Interlaminar fracture toughness of 3-D orthogonal interlocked fabric composites. Compos. Sci. Technol. 59, 1261–1270 (1999). https://doi.org/10.1016/S0266-3538(98)00167-5

    Article  Google Scholar 

  22. Dransfield, K., Baillie, C., Mai, Y.W.: Improving the delamination resistance of CFRP by stitching—a review. Compos. Sci. Technol. 50(3), 305–317 (1994). https://doi.org/10.1016/0266-3538(94)90019-1

    Article  Google Scholar 

  23. Narducci, F., Pinho, S.T.: Interaction between nacre-like CFRP mesolayers and long-fibre interlayers. Compos. Struct. 200, 921–928 (2018). https://doi.org/10.1016/j.compstruct.2018.05.103

    Article  Google Scholar 

  24. Li, W., Xiang, D., Wang, L., Harkin-Jones, E., Zhao, C., Wang, B., Li, Y.: Simultaneous enhancement of electrical conductivity and interlaminar fracture toughness of carbon fiber/epoxy composites using plasma-treated conductive thermoplastic film interleaves. RSC. Adv. 8(47), 26910–26921 (2018). https://doi.org/10.1039/c8ra05366a

    Article  CAS  Google Scholar 

  25. Palazzetti, R., Zucchelli, A., Gualandi, C., Focarete, M.L., Donati, L., Minak, G., Ramakrishna, S.: Influence of electrospun Nylon 6,6 nanofibrous mats on the interlaminar properties of Gr-epoxy composite laminates. Compos. Struct. 94(2), 571–579 (2012). https://doi.org/10.1016/j.compstruct.2011.08.019

    Article  Google Scholar 

  26. Guo, M., Yi, X., Rudd, C., Liu, X.: Preparation of highly electrically conductive carbon-fiber composites with high interlaminar fracture toughness by using silver-plated interleaves. Compos. Sci. Technol. 176, 29–36 (2019). https://doi.org/10.1016/j.compscitech.2019.03.014

    Article  CAS  Google Scholar 

  27. Zheng, W., Yao, Z., Lin, H., Zhou, J., Cai, H., Qi, T.: Improved fracture toughness of carbon fiber fabric/epoxy composite laminates using polyether sulfone fibers. High Perform. Polym. 31(8), 996–1005 (2019). https://doi.org/10.1177/0954008318812151

    Article  CAS  Google Scholar 

  28. Xu, H., Tong, X., Zhang, Y., Li, Q., Lu, W.: Mechanical and electrical properties of laminated composites containing continuous carbon nanotube film interleaves. Compos. Sci. Technol. 127, 113–118 (2016). https://doi.org/10.1016/j.compscitech.2016.02.032

    Article  CAS  Google Scholar 

  29. Yu, Y., Zhang, Z., Gan, W., Wang, M., Li, S.: Effect of Polyethersulfone on the Mechanical and Rheological Properties of Polyetherimide-Modified Epoxy Systems. Ind. Eng. Chem. Res. 42(14), 3250–3256 (2003). https://doi.org/10.1021/ie0210309

    Article  CAS  Google Scholar 

  30. Rajasekaran, R., Alagar, M., Chozhan, C.K.: Effect of polyethersulfone and N, N ’-bismaleimido-4,4 ’-diphenyl methane on the mechanical and thermal properties of epoxy systems. Express Polym. Lett. 2(5), 339–348 (2008). https://doi.org/10.3144/expresspolymlett.2008.40

    Article  CAS  Google Scholar 

  31. Ying, W.B., Yang, H.S., Moon, D.S., Lee, M.W., Ko, N.Y., Kwak, N.H., Lee, B., Zhu, J., Zhang, R.: Epoxy resins toughened with in situ azide-alkyne polymerized polysulfones. J. Appl. Polym. Sci. 135(5) (2018). https://doi.org/https://doi.org/10.1002/app.45790

  32. Lee, S.-E., Jeong, E., Lee, M.Y., Lee, M.-K., Lee, Y.-S.: Improvement of the mechanical and thermal properties of polyethersulfone-modified epoxy composites. J. Ind. Eng. Chem. 33, 73–79 (2016). https://doi.org/10.1016/j.jiec.2015.09.022

    Article  CAS  Google Scholar 

  33. Mimura, K., Ito, H., Fujioka, H.: Improvement of thermal and mechanical properties by control of morphologies in PES-modified epoxy resins. Polymer 41(12), 4451–4459 (2000). https://doi.org/10.1016/S0032-3861(99)00700-4

    Article  CAS  Google Scholar 

  34. Cheng, C., Chen, Z., Huang, Z., Zhang, C., Tusiime, R., Zhou, J., Sun, Z., Liu, Y., Yu, M., Zhang, H.: Simultaneously improving mode I and mode II fracture toughness of the carbon fiber/epoxy composite laminates via interleaved with uniformly aligned PES fiber webs. Compos. Part A: Appl. Sci. 129 (2020). https://doi.org/https://doi.org/10.1016/j.compositesa.2019.105696

  35. Bauhofer, W., Kovacs, J.Z.: A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69(10), 1486–1498 (2009). https://doi.org/10.1016/j.compscitech.2008.06.018

    Article  CAS  Google Scholar 

  36. Breton, Y., Désarmot, G., Salvetat, J.-P., Delpeux, S., Sinturel, C., Beguin, F., Bonnamy, S.: Mechanical properties of multiwall carbon nanotubes/epoxy composites: Influence of network morphology. Carbon 42, 1027–1030 (2004). https://doi.org/10.1016/j.carbon.2003.12.026

    Article  CAS  Google Scholar 

  37. Kobashi, K., Ata, S., Yamada, T., Futaba, D.N., Yumura, M., Hata, K.: A dispersion strategy: dendritic carbon nanotube network dispersion for advanced composites. Chem. Sci. 4(2), 727–733 (2013). https://doi.org/10.1039/c2sc21266h

    Article  CAS  Google Scholar 

  38. Wong, D.W.Y., Lin, L., Mcgrail, P.T., Peijs, T., Hogg, P.J.: Improved fracture toughness of carbon fibre/epoxy composite laminates using dissolvable thermoplastic fibres. Compos. Part A: Appl. Sci. 41(6), 759–767 (2010). https://doi.org/10.1016/j.compositesa.2010.02.008

    Article  CAS  Google Scholar 

  39. Seyhan, A.T., Tanoglu, M., Schulte, K.: Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites. Eng. Fract. Mech. 75(18), 5151–5162 (2008). https://doi.org/10.1016/j.engfracmech.2008.08.003

    Article  Google Scholar 

  40. Guo, J., Zhang, Q., Gao, L., Zhong, W., Sui, G., Yang, X.: Significantly improved electrical and interlaminar mechanical properties of carbon fiber laminated composites by using special carbon nanotube pre-dispersion mixture. Compos. Part A: Appl. Sci. 95, 294–303 (2017). https://doi.org/10.1016/j.compositesa.2017.01.021

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by International Cooperation Research Program of Chengdu (2019-GH02-00054-HZ), Scientific Research Starting Project of SWPU (2019QHZ011) and Scientific Research Foundation for the Returned Overseas Chinese Scholars of Sichuan Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuntao Li or Dong Xiang.

Ethics declarations

Conflicts of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, Y., Xiang, D. et al. Enhanced Electrical Conductivity and Interlaminar Fracture Toughness of CF/EP Composites via Interleaving Conductive Thermoplastic Films. Appl Compos Mater 28, 17–37 (2021). https://doi.org/10.1007/s10443-020-09848-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-020-09848-w

Keywords

Navigation