Skip to main content

Advertisement

Log in

Association between telomere length, frailty and death in older adults

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Frailty is considered a clinical marker of functional ageing. Telomere length (TL) has been proposed as a biomarker of biological age but its role in human ageing is controversial. The main aim of the study was to evaluate the longitudinal association of TL with incident frailty and mortality in two cohorts of Spanish community–dwelling older adults. TL was determined at baseline in blood samples from older adults included in Toledo Study for Healthy Aging and ENRICA cohorts while frailty was determined by frailty phenotype (FP) at baseline and at follow-up (3.5 years). Deaths occurring during follow-up were also recorded. Associations of TL with frailty and mortality were analysed by logistic regression with progressive adjustment. Data were separately analysed in the two cohorts and in all subjects by performing a meta-analysis. TL was not different between frail and non-frail subjects. Longer telomeres were not associated with lower risk of prevalent frailty. Similarly, TL at baseline failed to predict incident frailty (OR: 1.04 [0.88–1.23]) or even the development of a new FP criterion (OR: 0.97 [0.90–1.05]) at follow-up. Lack of association was also observed when analysing the development of specific FP criteria. Finally, while frailty at baseline was significantly associated with higher risk of death at follow-up (OR: 4.08 [1.97–8.43], p < 0.001), TL did not significantly change the mortality risk (OR: 1.05 [0.94–1.16]). Results show that TL does not predict incident frailty or mortality in older adults. This suggests that TL is not a reliable biomarker of functional age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. United Nations. World population ageing (2019). https://www.un.org/en/development/desa/population/publications/pdf/ageing/WorldPopulationAgeing2019-Highlights.pdf.

  2. Dzau VJ, Inouye SK, Rowe JW, Finkelman E, Yamada T. Enabling healthful aging for all - the National Academy of Medicine Grand Challenge in Healthy Longevity. N Engl J Med. 2019;381:1699–701. https://doi.org/10.1056/NEJMp1912298.

    Article  PubMed  Google Scholar 

  3. Brivio P, Paladini MS, Racagni G, Riva MA, Calabrese F, Molteni R. From healthy aging to frailty: in search of the underlying mechanisms. Curr Med Chem. 2019;26:3685–701. https://doi.org/10.2174/0929867326666190717152739.

    Article  CAS  PubMed  Google Scholar 

  4. Dent E, Martin FC, Bergman H, Woo J, Romero-Ortuño R, Walston JD. Management of frailty: opportunities, challenges, and future directions. Lancet. 2019;394:1376–86. https://doi.org/10.1016/S0140-6736(19)31785-4.

    Article  PubMed  Google Scholar 

  5. Angulo J, El Assar M, Rodriguez-Manas L. Frailty and sarcopenia as the basis for the phenotypic manifestation of chronic diseases in older adults. Mol Asp Med. 2016;50:1–32. https://doi.org/10.1016/j.mam.2016.06.001.

    Article  Google Scholar 

  6. Lorenzi M, Bonassi S, Lorenzi T, Giovannini S, Bernabei R, Onder G. A review of telomere length in sarcopenia and frailty. Biogerontology. 2018;19:209–21.

    Article  CAS  PubMed  Google Scholar 

  7. Ferrucci L, Gonzalez-Freire M, Fabbri E, Simonsick E, Tanaka T, Moore Z, et al. Measuring biological aging in humans: a quest. Aging Cell. 2020;19:e13080. https://doi.org/10.1111/acel.13080.

    Article  CAS  PubMed  Google Scholar 

  8. Fasching CL. Telomere length measurement as a clinical biomarker of aging and disease. Crit Rev Clin Lab Sci. 2018;55:443–65. https://doi.org/10.1080/10408363.2018.1504274.

    Article  CAS  PubMed  Google Scholar 

  9. Cawthon RM, Smith KR, O'Brien E, Sivatchenko A, Kerber RA. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet. 2003;361:393–5. https://doi.org/10.1016/S0140-6736(03)12384-7.

    Article  CAS  PubMed  Google Scholar 

  10. El Assar M, Angulo J, Rodríguez-Mañas L. Frailty as a phenotypic manifestation of underlying oxidative stress. Free Radic Biol Med. 2020;149:72–7. https://doi.org/10.1016/j.freeradbiomed.2019.08.011.

    Article  CAS  PubMed  Google Scholar 

  11. Yu R, Tang N, Leung J, Woo J. Telomere length is not associated with frailty in older Chinese elderly: cross-sectional and longitudinal analysis. Mech Ageing Dev. 2015;152:74–9. https://doi.org/10.1016/j.mad.2015.10.002.

    Article  CAS  PubMed  Google Scholar 

  12. Breitling LP, Saum KU, Perna L, Schottker B, Holleczek B, Brenner H. Frailty is associated with the epigenetic clock but not with telomere length in a German cohort. Clin Epigenetics. 2016;8:21. https://doi.org/10.1186/s13148-016-0186-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ortiz-Ramírez M, Sánchez-García S, García-De la Torre P, Reyes-Maldonado E, Sánchez-Arenas R, Rosas-Vargas H. Telomere shortening and frailty in Mexican older adults. Geriatr Gerontol Int. 2018;18:1286–92. https://doi.org/10.1111/ggi.13463.

    Article  PubMed  Google Scholar 

  14. Vetter VM, Spira D, Banszerus VL, Demuth I. Epigenetic clock and leukocyte telomere length are associated with vitamin D status, but not with functional assessments and frailty in the Berlin Aging Study II. J Gerontol A Biol Sci Med Sci. 2020; (On-line ahead of print). https://doi.org/10.1093/gerona/glaa101.

  15. García-García FJ, Gutiérrez Avila G, Alfaro-Acha A, et al. The prevalence of frailty syndrome in an older population from Spain. The Toledo Study for Healthy Aging. J Nutr Health Aging. 2011;15:852–6. https://doi.org/10.1007/s12603-011-0075-8.

    Article  PubMed  Google Scholar 

  16. Sánchez-Sánchez JL, Izquierdo M, Carnicero-Carreño JA, García-García FJ, Rodríguez-Mañas L. Physical activity trajectories, mortality, hospitalization, and disability in the Toledo Study of Healthy Aging. J Cachexia Sarcopenia Muscle. 2020; (On-line ahead of print). https://doi.org/10.1002/jcsm.12566.

  17. Rodríguez-Artalejo F, Graciani A, Guallar-Castillón P, León-Muñoz LM, Zuluaga MC, López-García E, et al. Rationale and methods of the study on nutrition and cardiovascular risk in Spain (ENRICA). Rev Esp Cardiol. 2011;64:876–82. https://doi.org/10.1016/j.recesp.2011.05.019.

    Article  PubMed  Google Scholar 

  18. Ortolá R, Struijk EA, García-Esquinas E, Rodríguez-Artalejo F, López-García E. Changes in dietary intake of animal and vegetable protein and unhealthy aging. Am J Med. 2019;132:1091–102. e9. https://doi.org/10.1016/j.amjmed.2019.06.051.

    Article  CAS  PubMed  Google Scholar 

  19. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56:M146–56. https://doi.org/10.1093/gerona/56.3.m146.

    Article  CAS  PubMed  Google Scholar 

  20. Ottenbacher KJ, Branch LG, Ray L, Gonzales VA, Peek MK, Hinman MR. The reliability of upper- and lower-extremity strength testing in a community survey of older adults. Arch Phys Med Rehabil. 2002;83:1423–7. https://doi.org/10.1053/apmr.2002.34619.

    Article  PubMed  Google Scholar 

  21. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49:M85–94. https://doi.org/10.1093/geronj/49.2.m85.

    Article  CAS  PubMed  Google Scholar 

  22. Washburn RA, Smith KW, Jette AM, Janney CA. The physical activity scale for the elderly (PASE): development and evaluation. J Clin Epidemiol. 1993;46:153–62. https://doi.org/10.1016/0895-4356(93)90053-4.

    Article  CAS  PubMed  Google Scholar 

  23. Katz S, Ford AB, Moskowitz RW, Jackson BA, Jaffe MW. Studies of illness in the aged. The index of ADL: a standardized measure of biological and psychosocial function. JAMA. 1963;185:914–9. https://doi.org/10.1001/jama.1963.03060120024016.

    Article  CAS  PubMed  Google Scholar 

  24. de Pedro N, Díez M, García I, García J, Otero L, Fernández L, et al. Analytical Validation of Telomere Analysis Technology® for the high-throughput analysis of multiple telomere-associated variables. Biol Proced Online. 2020;22:2. https://doi.org/10.1186/s12575-019-0115-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002;30:e47. https://doi.org/10.1093/nar/30.10.e47.

    Article  PubMed  PubMed Central  Google Scholar 

  26. O'Callaghan NJ, Fenech M. A quantitative PCR method for measuring absolute telomere length. Biol Proced Online. 2011;13:3. https://doi.org/10.1186/1480-9222-13-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36:1–48. https://doi.org/10.18637/jss.v036.i03.

    Article  Google Scholar 

  28. Muezzinler A, Zaineddin AK, Brenner H. A systematic review of leukocyte telomere length and age in adults. Ageing Res Rev. 2013;12:509–19. https://doi.org/10.1016/j.arr.2013.01.003.

    Article  CAS  PubMed  Google Scholar 

  29. Blackburn EH, Epel ES, Lin J. Human telomere biology: a contributory and interactive factor in aging, disease risk, and protection. Science. 2015;350:1193–8. https://doi.org/10.1126/science.aab3389.

    Article  CAS  PubMed  Google Scholar 

  30. Svensson J, Karlsson MK, Ljunggren O, Tivesten A, Mellstrom D, Moverare-Skrtic S. Leukocyte telomere length is not associated with mortality in older men. Exp Gerontol. 2014;57:6–12. https://doi.org/10.1016/j.exger.2014.04.013.

    Article  CAS  PubMed  Google Scholar 

  31. Needham BL, Rehkopf D, Adler N, Gregorich S, Lin J, Blackburn EH, et al. Leukocyte telomere length and mortality in the National Health and Nutrition Examination Survey, 1999-2002. Epidemiology. 2015;26:528–35. https://doi.org/10.1097/EDE.0000000000000299.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Woo J, Yu R, Tang N, Leung J. Telomere length is associated with decline in grip strength in older persons aged 65 years and over. Age (Dordr). 2014;36:9711. https://doi.org/10.1007/s11357-014-9711-7.

    Article  Google Scholar 

  33. Risques RA, Arbeev KG, Yashin AI, Ukraintseva SV, Martin GM, Rabinovitch PS, et al. Leukocyte telomere length is associated with disability in older U.S. population. J Am Geriatr Soc. 2010;58:1289–98. https://doi.org/10.1111/j.1532-5415.2010.02948.x.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Marzetti E, Lorenzi M, Antocicco M, Bonassi S, Celi M, Mastropaolo S, et al. Shorter telomeres in peripheral blood mononuclear cells from older persons with sarcopenia: results from an exploratory study. Front Aging Neurosci. 2014;6:233. https://doi.org/10.3389/fnagi.2014.00233.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Saum KU, Dieffenbach AK, Muezzinler A, et al. Frailty and telomere length: cross-sectional analysis in 3537 older adults from the ESTHER cohort. Exp Gerontol. 2014;58:250–5. https://doi.org/10.1016/j.exger.2014.08.009.

    Article  CAS  PubMed  Google Scholar 

  36. Zhou J, Wang J, Shen Y, Yang Y, Huang P, Chen S, et al. The association between telomere length and frailty: a systematic review and meta-analysis. Exp Gerontol. 2018;106:16–20. https://doi.org/10.1016/j.exger.2018.02.030.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Q, Zhan Y, Pedersen NL, Fang F, Hagg S. Telomere length and all-cause mortality: a meta-analysis. Ageing Res Rev. 2018;48:11–20. https://doi.org/10.1016/j.arr.2018.09.002.

    Article  CAS  PubMed  Google Scholar 

  38. Gardner MP, Martin-Ruiz C, Cooper R, Hardy R, Sayer AA, Cooper C, et al. Telomere length and physical performance at older ages: an individual participant meta-analysis. PLoS One. 2013;8:e69526. https://doi.org/10.1371/journal.pone.0069526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Haapanen MJ, Perala MM, Salonen MK, et al. Telomere length and frailty: the Helsinki Birth Cohort study. J Am Med Dir Assoc. 2018;19:658–62. https://doi.org/10.1016/j.jamda.2018.05.011.

    Article  PubMed  Google Scholar 

  40. Diez Roux AV, Ranjit N, Jenny NS, Shea S, Cushman M, Fitzpatrick A, et al. Race/ethnicity and telomere length in the Multi-Ethnic Study of Atherosclerosis. Aging Cell. 2009;8:251–7. https://doi.org/10.1111/j.1474-9726.2009.00470.x.

    Article  CAS  PubMed  Google Scholar 

  41. Araujo Carvalho AC, Tavares Mendes ML, da Silva Reis MC, Santos VS, Tanajura DM, Martins-Filho PRS. Telomere length and frailty in older adults-a systematic review and meta-analysis. Ageing Res Rev. 2019;54:100914. https://doi.org/10.1016/j.arr.2019.100914.

    Article  CAS  PubMed  Google Scholar 

  42. Arts MHL, Collard RM, Comijs HC, de Jonge L, Penninx BWJH, Naarding P, et al. Leucocyte telomere length is no molecular marker of physical frailty in late-life depression. Exp Gerontol. 2018;111:229–34. https://doi.org/10.1016/j.exger.2018.07.016.

    Article  CAS  PubMed  Google Scholar 

  43. Zhan Y, Liu XR, Reynolds CA, Pedersen NL, Hagg S, Clements MS. Leukocyte telomere length and all-cause mortality: a between-within twin study with time-dependent effects using generalized survival models. Am J Epidemiol. 2018;187:2186–91. https://doi.org/10.1093/aje/kwy128.

    Article  PubMed  Google Scholar 

  44. Martin-Ruiz CM, Gussekloo J, van Heemst D, von Zglinicki T, Westendorp RG. Telomere length in white blood cells is not associated with morbidity or mortality in the oldest old: a population-based study. Aging Cell. 2005;4:287–90. https://doi.org/10.1111/j.1474-9726.2005.00171.x.

    Article  CAS  PubMed  Google Scholar 

  45. Rodríguez-Mañas L, Féart C, Mann G, Viña J, Chatterji S, Chodzko-Zajko W, et al. Searching for an operational definition of frailty: a Delphi method based consensus statement: the frailty operative definition-consensus conference project. J Gerontol A Biol Sci Med Sci. 2013;68:62–7. https://doi.org/10.1093/gerona/gls119.

    Article  PubMed  Google Scholar 

  46. Fitzpatrick AL, Kronmal RA, Kimura M, Gardner JP, Psaty BM, Jenny NS, et al. Leukocyte telomere length and mortality in the Cardiovascular Health Study. J Gerontol A Biol Sci Med Sci. 2011;66:421–9. https://doi.org/10.1093/gerona/glq224.

    Article  PubMed  Google Scholar 

  47. Gladyshev VN. Aging progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes. Aging Cell. 2016;15:594–602. https://doi.org/10.1111/acel.12480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Galkin F, Mamoshina P, Aliper A, de Magalhaes JP, Gladyshev VN, Zhavoronkov A. Biohorology and biomarkers of aging: current state-of-the-art, challenges and opportunities. Ageing Res Rev. 2020;60:101050. https://doi.org/10.1016/j.arr.2020.101050.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We appreciate the altruistic contribution of the participants from the Toledo Study for Healthy Aging cohort and ENRICA cohort.

Funding

This work has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 305483 and was supported by grants from the Ministry of Economy and Competitiveness and co-financed by FEDER funds (Instituto de Salud Carlos III, PI15/00674, PI15/01160) and CIBERFES (CB16/10/00464), Spanish Government.

Author information

Authors and Affiliations

Authors

Contributions

MEA, JA, JAC, SW, FRA and LRM participated in conceptualization and design of the study; MEA, JA, JAC, SW, JGM, IGP, FLGG, FRA and LRM performed data acquisition analysis and interpretation; MEA, JA, JAC, SW, FRA and LRM wrote the original draft of the manuscript; all authors reviewed, edited and approved the final version of the manuscript.

Corresponding author

Correspondence to Leocadio Rodríguez-Mañas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The study protocols were approved by the Clinical Research Ethics Committee of the Complejo Hospitalario de Toledo (Toledo Study for Healthy Aging cohort), and by the Clinical Research Ethics Committee of the ‘La Paz’ University Hospital in Madrid (ENRICA cohort).

Consent to participate

All participants gave written informed consent to participate.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Assar, M., Angulo, J., Carnicero, J.A. et al. Association between telomere length, frailty and death in older adults. GeroScience 43, 1015–1027 (2021). https://doi.org/10.1007/s11357-020-00291-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-020-00291-0

Keywords

Navigation