Skip to main content
Log in

Orbital-regulated interfacial electronic coupling endows Ni3N with superior catalytic surface for hydrogen evolution reaction

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The interstitial structure and weak Ni-N interaction of Ni3N lead to high unoccupied d orbital energy and unsuitable orbital orientation, which consequently results in weak orbital coupling with H2O and slow water dissociation kinetics for alkaline hydrogen evolution catalysis. Herein, we successfully lower the unoccupied d orbital energy of Ni3N to strengthen the interfacial electronic coupling by employing the strong electron pulling capability of oxygen dopants. The prepared O-Ni3N catalyst delivers an overpotential of 55 mV at 10 mA cm−2, very close to the commercial Pt/C. Refined structural characterization indicates the oxygen incorporation can decrease the electron densities around the Ni sites. Moreover, density functional theory calculation further proves the oxygen incorporation can create more unoccupied orbitals with lower energy and superior orientation for water adsorption and dissociation. The concept of orbital-regulated interfacial electronic coupling could offer a unique approach for the rational design of hydrogen evolution catalysts and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zou X, Zhang Y. Chem Soc Rev, 2015, 44: 5148–5180

    Article  CAS  PubMed  Google Scholar 

  2. Roger I, Shipman MA, Symes MD. Nat Rev Chem, 2017, 1: 0003

    Article  CAS  Google Scholar 

  3. Zhu J, Hu L, Zhao P, Lee LYS, Wong KY. ChemRev, 2020, 120: 851–918

    CAS  Google Scholar 

  4. Morales-Guio CG, Stern LA, Hu X. Chem Soc Rev, 2014, 43: 6555–6569

    Article  CAS  PubMed  Google Scholar 

  5. Cao L, Luo Q, Liu W, Lin Y, Liu X, Cao Y, Zhang W, Wu Y, Yang J, Yao T, Wei S. Nat Catal, 2019, 2: 134–141

    Article  CAS  Google Scholar 

  6. Subbaraman R, Tripkovic D, Chang KC, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM. Nat Mater, 2012, 11: 550–557

    Article  CAS  PubMed  Google Scholar 

  7. Cheng N, Stambula S, Wang D, Banis MN, Liu J, Riese A, Xiao B, Li R, Sham TK, Liu LM, Botton GA, Sun X. Nat Commun, 2016, 7: 13638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xie Y, Cai J, Wu Y, Zang Y, Zheng X, Ye J, Cui P, Niu S, Liu Y, Zhu J, Liu X, Wang G, Qian Y. Adv Mater, 2019, 31: 1807780

    Article  CAS  Google Scholar 

  9. Zhao Z, Liu H, Gao W, Xue W, Liu Z, Huang J, Pan X, Huang Y. J Am Chem Soc, 2018, 140: 9046–9050

    Article  CAS  PubMed  Google Scholar 

  10. Theerthagiri J, Cardoso ESF, Fortunato GV, Casagrande GA, Senthilkumar B, Madhavan J, Maia G. ACS Appl Mater Interfaces, 2019, 11: 4969–4982

    Article  CAS  PubMed  Google Scholar 

  11. Jiang P, Liu Q, Liang Y, Tian J, Asiri AM, Sun X. Angew Chem Int Ed, 2014, 53: 12855–12859

    Article  CAS  Google Scholar 

  12. Zhang J, Wang T, Liu P, Liao Z, Liu S, Zhuang X, Chen M, Zschech E, Feng X. Nat Commun, 2017, 8: 15437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liang X, Li Y, Fan H, Deng S, Zhao X, Chen M, Pan G, Xiong Q, Xia X. Nanotechnology, 2019, 30: 484001

    Article  CAS  PubMed  Google Scholar 

  14. Chen Q, Wang R, Yu M, Zeng Y, Lu F, Kuang X, Lu X. Electrochim Acta, 2017, 247: 666–673

    Article  CAS  Google Scholar 

  15. Gao W, Yan M, Cheung HY, Xia Z, Zhou X, Qin Y, Wong CY, Ho JC, Chang CR, Qu Y. Nano Energy, 2017, 38: 290–296

    Article  CAS  Google Scholar 

  16. Zhang C, Shi Y, Yu Y, Du Y, Zhang B. ACS Catal, 2018, 8: 8077–8083

    Article  CAS  Google Scholar 

  17. Zhu B, Zou R, Xu Q. Adv Energy Mater, 2018, 8: 1801193

    Article  CAS  Google Scholar 

  18. Li Y, Li F, Zhao Y, Li SN, Zeng JH, Yao HC, Chen Y. J Mater Chem A, 2019, 7: 20658–20666

    Article  CAS  Google Scholar 

  19. Deng S, Zhong Y, Zeng Y, Wang Y, Wang X, Lu X, Xia X, Tu J. Adv Sci, 2018, 5: 1700772

    Article  CAS  Google Scholar 

  20. Sarwar S, Nautiyal A, Cook J, Yuan Y, Li J, Uprety S, Shahbazian-Yassar R, Wang R, Park M, Bozack MJ, Zhang X. Sci China Mater, 2020, 63: 62–74

    Article  CAS  Google Scholar 

  21. Lu XF, Yu L, Lou XWD. Sci Adv, 2019, 5: eaav6009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu XF, Yu L, Zhang J, Lou XWD. Adv Mater, 2019, 31: 1900699

    Article  CAS  Google Scholar 

  23. Shanmugam P, Murthy AP, Theerthagiri J, Wei W, Madhavan J, Kim HS, Maiyalagan T, Xie J. Int J Hydrogen Energy, 2019, 44: 13334–13344

    Article  CAS  Google Scholar 

  24. Murthy AP, Theerthagiri J, Madhavan J, Murugan K. Electrochem Commun, 2017, 83: 6–10

    Article  CAS  Google Scholar 

  25. Gao D, Zhang J, Wang T, Xiao W, Tao K, Xue D, Ding J. J Mater Chem A, 2016, 4: 17363–17369

    Article  CAS  Google Scholar 

  26. Niu S, Fang Y, Zhou J, Cai J, Zang Y, Wu Y, Ye J, Xie Y, Liu Y, Zheng X, Qu W, Liu X, Wang G, Qian Y. J Mater Chem A, 2019, 7: 10924–10929

    Article  CAS  Google Scholar 

  27. Song F, Li W, Yang J, Han G, Liao P, Sun Y. Nat Commun, 2018, 9: 4531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wang T, Wang M, Yang H, Xu M, Zuo C, Feng K, Xie M, Deng J, Zhong J, Zhou W, Cheng T, Li Y. Energy Environ Sci, 2019, 12: 3522–3529

    Article  CAS  Google Scholar 

  29. Wang Y, Chen L, Yu X, Wang Y, Zheng G. Adv Energy Mater, 2017, 7: 1601390

    Article  CAS  Google Scholar 

  30. Zhu C, Wang A, Xiao W, Chao D, Zhang X, Tiep NH, Chen S, Kang J, Wang X, Ding J, Wang J, Zhang H, Fan HJ. Adv Mater, 2018, 30: 1705516

    Article  CAS  Google Scholar 

  31. Yan D, Dou S, Tao L, Liu Z, Liu Z, Huo J, Wang S. J Mater Chem A, 2016, 4: 13726–13730

    Article  CAS  Google Scholar 

  32. Liu B, He B, Peng HQ, Zhao Y, Cheng J, Xia J, Shen J, Ng TW, Meng X, Lee CS, Zhang W. Adv Sci, 2018, 5: 1800406

    Article  CAS  Google Scholar 

  33. Chen Z, Song Y, Cai J, Zheng X, Han D, Wu Y, Zang Y, Niu S, Liu Y, Zhu J, Liu X, Wang G. Angew Chem Int Ed, 2018, 57: 5076–5080

    Article  CAS  Google Scholar 

  34. Song F, Li W, Yang J, Han G, Yan T, Liu X, Rao Y, Liao P, Cao Z, Sun Y. ACS Energy Lett, 2019, 4: 1594–1601

    Article  CAS  Google Scholar 

  35. Xie J, Li S, Zhang X, Zhang J, Wang R, Zhang H, Pan B, Xie Y. Chem Sci, 2014, 5: 4615–4620

    Article  CAS  Google Scholar 

  36. Theerthagiri J, Lee SJ, Murthy AP, Madhavan J, Choi MY. Curr Opin Solid State Mater Sci, 2020, 24: 100805

    Article  CAS  Google Scholar 

  37. Zhang F, Xi S, Lin G, Hu X, Lou XWD, Xie K. Adv Mater, 2019, 31: 1806552

    Article  CAS  Google Scholar 

  38. Yu L, Song S, McElhenny B, Ding F, Luo D, Yu Y, Chen S, Ren Z. J Mater Chem A, 2019, 7: 19728–19732

    Article  CAS  Google Scholar 

  39. Gao B, Li X, Ding K, Huang C, Li Q, Chu PK, Huo K. J Mater Chem A, 2018, 7: 14–37

    Article  Google Scholar 

  40. Zhao G, Rui K, Dou SX, Sun W. Adv Funct Mater, 2018, 28: 1803291

    Article  CAS  Google Scholar 

  41. Liu L, Corma A. Chem Rev, 2018, 118: 4981–5079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu K, Chen P, Li X, Tong Y, Ding H, Wu X, Chu W, Peng Z, Wu C, Xie Y. J Am Chem Soc, 2015, 137: 4119–4125

    Article  CAS  PubMed  Google Scholar 

  43. Zang Y, Niu S, Wu Y, Zheng X, Cai J, Ye J, Xie Y, Liu Y, Zhou J, Zhu J, Liu X, Wang G, Qian Y. Nat Commun, 2019, 10: 1217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sun Y, Xu K, Wei Z, Li H, Zhang T, Li X, Cai W, Ma J, Fan HJ, Li Y. Adv Mater, 2018, 30: 1802121

    Article  CAS  Google Scholar 

  45. Fei H, Dong J, Feng Y, Allen CS, Wan C, Volosskiy B, Li M, Zhao Z, Wang Y, Sun H, An P, Chen W, Guo Z, Lee C, Chen D, Shakir I, Liu M, Hu T, Li Y, Kirkland AI, Duan X, Huang Y. Nat Catal, 2018, 1: 63–72

    Article  CAS  Google Scholar 

  46. Fei H, Dong J, Chen D, Hu T, Duan X, Shakir I, Huang Y, Duan X. Chem Soc Rev, 2019, 48: 5207–5241

    Article  CAS  PubMed  Google Scholar 

  47. Zhang G, Wang G, Liu Y, Liu H, Qu J, Li J. J Am Chem Soc, 2016, 138: 14686–14693

    Article  CAS  PubMed  Google Scholar 

  48. Ni W, Krammer A, Hsu C, Chen HM, Schüler A, Hu X. Angew Chem Int Ed, 2019, 58: 7445–7449

    Article  CAS  Google Scholar 

  49. Pan Y, Sun K, Liu S, Cao X, Wu K, Cheong WC, Chen Z, Wang Y, Li Y, Liu Y, Wang D, Peng Q, Chen C, Li Y. J Am Chem Soc, 2018, 140: 2610–2618

    Article  CAS  PubMed  Google Scholar 

  50. Wu Y, Liu X, Han D, Song X, Shi L, Song Y, Niu S, Xie Y, Cai J, Wu S, Kang J, Zhou J, Chen Z, Zheng X, Xiao X, Wang G. Nat Commun, 2018, 9: 1425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kou T, Smart T, Yao B, Chen I, Thota D, Ping Y, Li Y. Adv Energy Mater, 2018, 8: 1703538

    Article  CAS  Google Scholar 

  52. Wang P, Zhang X, Zhang J, Wan S, Guo S, Lu G, Yao J, Huang X. Nat Commun, 2017, 8: 14580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li Y, Li H, Cao K, Jin T, Wang X, Sun H, Ning J, Wang Y, Jiao L. Energy Storage Mater, 2018, 12: 44–53

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21771169, 51801075, 11722543), the National Key Research and Development Program of China (2017YFA0206703), Anhui Provincial Natural Science Foundation (BJ2060190077), Recruitment Program of Global Expert, and the Fundamental Research Funds for the Central Universities (WK2060190074; WK2060190081, WK2310000066). We also thank the Shanghai Synchrotron Radiation Facility (BL14W1, SSRF) and the Hefei National Synchrotron Radiation Laboratory (BL10B, NSRL) for the characterization of XAFS, UPS and XPS. The computational research in this paper has been done on the supercomputing system in the Supercomputing Center of University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gongming Wang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

11426_2020_9839_MOESM1_ESM.docx

Orbital-Regulated Interfacial Electronic Coupling Endows Ni3N with Superior Catalytic Surface for Hydrogen Evolution Reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Sun, D., Niu, S. et al. Orbital-regulated interfacial electronic coupling endows Ni3N with superior catalytic surface for hydrogen evolution reaction. Sci. China Chem. 63, 1563–1569 (2020). https://doi.org/10.1007/s11426-020-9839-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9839-y

Navigation