Skip to main content
Log in

A functionalized nanocomposite adsorbent for the sequential removal of radioactive iodine and cobalt ions in aqueous media

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The need for efficient remediation of the radioactive waste caused by undesirable nuclear accidents and overspending of radionuclides has gained worldwide attention, with extensive recent efforts made to protect the environment from radioactive contamination. Although various treatment processes for the removal of radionuclides and the purification of liquid waste have been reported, the development of a better decontamination method is still necessary for obtaining enhanced desalination performances. Herein, we report a dual-functional composite adsorbent composed of a cellulose acetate membrane as a solid support, gold nanoparticles (AuNPs), and a metal chelating agent which can potentially be used to efficiently remove radioactive iodine and cobalt. In the desalination experiments, the sorption membrane was able to remove cobalt ions rapidly in water. Isotherm data shows that approximately 180 Co2+ atoms were captured per AuNP. Next, the same material was used for the adsorption of iodide anions. Within a few minutes, more than 99% of radioactive iodine was removed even in the presence of other ion species. These findings clearly demonstrate that the desalination method presented in here provides a useful approach for the sequential removal of toxic metal and halogen species in aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Ramana, Wires Energy Environ., 7, e289 (2018).

    Article  Google Scholar 

  2. International Atomic Energy Agency, IAEA/NSR (2019).

  3. M. Khayet and T. Matsuura, Desalination, 321, 1 (2013).

    Article  CAS  Google Scholar 

  4. A. Lerebours, D. Gudkov, L. Nagorskaya, A. Kaglyan, V. Rizewski, A. Leshchenko, E. H. Bailey, A. Bakir, S. Ovsyanikova, G. Laptev and J. T. Smith, Environ. Sci. Technol., 52, 9442 (2018).

    Article  CAS  Google Scholar 

  5. N. S. Fisher, K. Beaugelin-Seiller, T. G. Hinton, Z. Baumann, D. J. Madigan and J. Garnier-Laplace, Proc. Natl. Acad. Sci. U.S.A., 110, 10670 (2013).

    Article  CAS  Google Scholar 

  6. X. Hou, P. P. Povinec, L. Zhang, K. Shi, D. Biddulph, C.-C. Chang, Y. Fan, R. Golser, Y Hou, M. Jeskovsky, A. J. T. Jull, Q. Liu, M. Luo, P. Steier and W. Zhou, Environ. Sci. Technol., 47, 3091 (2013).

    Article  CAS  Google Scholar 

  7. R. Ravichandran, Management of radioactive wastes in a hospital environment, Springer, Publications, Singapore (2017).

    Book  Google Scholar 

  8. D. Kontogeorgakos, F. Tzika and I. E. Stamatelatos, Nucl. Technol., 175, 435 (2017).

    Article  Google Scholar 

  9. D.-Q. Luo, S.-S. Zhao, Y.-R. Tang, Q.-J. Wang, H.-J. Liu and S.-C. Ma, J. Anal. Methods Chem., 8, 1 (2018).

    Article  Google Scholar 

  10. C. Joshi, S. Dhanesar, J. Darko, A. Kerr, P. Vidyasagar and L. Schreiner, J. Med. Phys., 34, 137 (2009).

    Article  Google Scholar 

  11. H.E. Shim, S. Mushtaq and J. Jeon, J. Vis. Exp, 137, e58105 (2018).

    Google Scholar 

  12. S. Mushtaq, S.-J. Yun, J.E. Yang, S.-W. Jeong, H.E. Shim, M.H. Choi, S. H. Park, Y. J. Choi and J. Jeon, Environ. Sci. Nano, 4, 2157 (2017).

    Article  CAS  Google Scholar 

  13. M.H. Choi, S.-W. Jeong, H.E. Shim, S.-J. Yun, S. Mushtaq, D.S. Choi, B.-S. Jang, J. E. Yang, Y. J. Choi and J. Jeon, Chem. Commun., 53, 3937 (2017).

    Article  CAS  Google Scholar 

  14. M. H. Choi, H. E. Shim, S.-J. Yun, S. H. Park, D. S. Choi, B.-S. Jang, Y. J. Choi and J. Jeon, ACS Appl. Mater. Interfaces, 8, 29227 (2016).

    Article  CAS  Google Scholar 

  15. Q. Ong, Z. Luo and F. Stellacci, Acc. Chem. Res., 50, 1911 (2017).

    Article  CAS  Google Scholar 

  16. N. Elahi, M. Kamali and M. H. Baghersad, Talanta, 184, 537 (2018).

    Article  CAS  Google Scholar 

  17. M. Kaushik and A. Moores, Green Chem., 18, 622 (2016).

    Article  CAS  Google Scholar 

  18. S. V. Wegner and J. P. Spartz, Angew. Chem., 52, 7593 (2013).

    Article  CAS  Google Scholar 

  19. T. T. Le, C. P. Wilde, N. Grossman and A. E. G. Cass, Phys. Chem. Chem. Phys., 13, 5271 (2011).

    Article  CAS  Google Scholar 

  20. J. F. Hainfeld, W. Liu, C. M. R. Halsey, P. Freimuth and R. D. Powell, J. Struct. Biol., 127, 185 (1999).

    Article  CAS  Google Scholar 

  21. L. R. Khanal, J. A. Sundararajan and Y. Qiang, Energy Technol., 8, 1901070 (2020).

    Article  Google Scholar 

  22. Y Yuan, H. Wang, S. Hou and D. Xia, Wiley-VCH: Hoboken, Publications, USA (2018).

    Google Scholar 

  23. X. Zhang and Y Liu, Environ. Sci. Nano, 7, 1008 (2020).

    Article  CAS  Google Scholar 

  24. W. Song, X. Wang, Q. Wang, D. Shao and X. Wang, Phys. Chem. Chem. Phys., 17, 398 (2015).

    Article  CAS  Google Scholar 

  25. M. E. Mahmoud, E. A. Saad, M. A. Soliman and M. S. Abdelwahab, RSC Adv., 6, 66242 (2016).

    Article  CAS  Google Scholar 

  26. E. H. Borai, M. M. E. Breky, M. S. Sayed and M. M. Abo-Aly, J. Colloid Interface Sci., 450, 17 (2015).

    Article  CAS  Google Scholar 

  27. D. Yang, S. Sarina, H. Zhu, H. Liu, Z. Zheng, M. Xie, S.V. Smith and S. Komarneni, Angew. Chem. Int. Ed., 50, 10594 (2011).

    Article  CAS  Google Scholar 

  28. Y.-Y. Chen, S.-H. Yu, Q.-Z. Yao, S.-Q. Fu and G.-T. Zhou, J. Colloid Interface Sci., 510, 280 (2018).

    Article  CAS  Google Scholar 

  29. M. F. Attallah, A. I. Abd-Elhamid, I. M. Ahmed and H. F. Aly, J. Mol. Liq., 261, 379 (2018).

    Article  CAS  Google Scholar 

  30. C. Xiao, Z. H. Fard, D. Sarma, T.-B. Song, C. Xu and M. G. Kanatzidis, J. Am. Chem. Soc., 139, 16494 (2017).

    Article  CAS  Google Scholar 

  31. M.E. Mahmoud, E.A. Allam, E.A. Saad, A.M. El-Khatib and M. A. Soliman, J. Polym. Environ., 27, 421 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Research Foundation of Korea (Grant number: 2019R1F1A1061596).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongho Jeon.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2020_668_MOESM1_ESM.pdf

A functionalized nanocomposite adsorbent for the sequential removal of radioactive iodine and cobalt ions in aqueous media

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.E., Shim, H.E., Mushtaq, S. et al. A functionalized nanocomposite adsorbent for the sequential removal of radioactive iodine and cobalt ions in aqueous media. Korean J. Chem. Eng. 37, 2209–2215 (2020). https://doi.org/10.1007/s11814-020-0668-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0668-1

Keywords

Navigation