Skip to main content
Log in

Experiment and multiphase CFD simulation of gas-solid flow in a CFB reactor at various operating conditions: Assessing the performance of 2D and 3D simulations

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Accurate prediction of gas-solid flow hydrodynamics is key for the design, optimization, and scale-up of a circulating fluidized bed (CFB) reactor. Computational fluid dynamics (CFD) simulation with two-dimensional (2D) domain has been routinely used, considering the computational costs involved in three-dimensional (3D) simulations. This work evaluated the prediction capability of 2D and 3D gas-solid flow simulation in the lab-scale CFB riser section. The difference between 2D and 3D CFD simulation predictions was assessed and discussed in detail, considering several flow variables (superficial gas velocity, solid circulation rate, and secondary air injection). The transient Eulerian-Eulerian multiphase model was used. CFD simulation results were validated through an in-house experiment. The comparison between the experimental data and both computational domains shows that the 3D simulation can accurately predict the axial solid holdup profile. The CFD simulation comparison considering several flow conditions clearly indicated the limitation of the 2D simulation to accurately predict key hydrodynamic features, such as high solid holdup near the riser exit and riser bottom dense region. The accuracy of 2D and 3D simulations was further assessed using root-mean-square error calculation. Results indicated that the 3D simulation predicts flow behavior with higher accuracy than the 2D simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CD :

drag coefficient, dimensionless

dp :

mean diameter of particle [µm]

D:

riser diameter [m]

ess :

particle-particle restitution coefficient

ew :

particle-wall restitution coefficient

Gs :

solid circulation rate [kg/m2s]

g:

gravitational acceleration [m/s2]

g0, ss :

radial distribution function

H:

riser Height [m]

hi :

secondary air injection height

Iv :

solid inventory [kg]

\({{\rm{k}}_{{\theta _s}}}\) :

diffusion coefficient for granular energy [kg/m s]

pi :

pressure [Pa]

ΔP/ΔL:

pressure drop gradient [Pa/m]

qs :

granular temperature flux at the wall

Rei :

Reynolds number

Ug :

superficial gas velocity [m/s]

\({\overrightarrow {\rm{U}} _{\rm{s}}}\) :

particle slip velocity parallel to the wall

vi :

velocity [m/s]

α i :

volume fraction of phase i

α s, max :

solid volume fraction at maximum packing

\({\gamma _{{\theta _s}}}\) :

collisional dissipation of energy [kg/m3s]

θ i :

granular temperature [m2/s2]

λ s :

solid bulk viscosity [kg/s/m]

μ i :

shear viscosity [kg/s/m]

ρ i :

density [kg/m3]

τ i :

stress tensor for phase i [Pa]

β gs :

gas-solid phase interphase momentum exchange coefficient [kg/m3s]

φ :

specularity coefficient

ϕ gs :

transfer rate of energy [kg/m3s]

col:

collisional

fr:

frictional

g:

gas phase

kin:

kinetic

s:

solid phase

ss:

solid-solid

w:

wall

2D, 3D:

two-dimensional, three-dimensional

CFD:

computational fluid dynamics

CFB:

circulating fluidized bed

SAR:

secondary air injection ratio

SIMPLE:

semi-implicit method for pressure-linked equations

TFM:

two-fluid model

RMSE:

root mean square error

References

  1. F. Berruti, J. Chaouki, L. Godfroy, T. S. Pugsley and G. S. Patience, Can. J. Chem. Eng., 73, 569 (1995).

    Article  Google Scholar 

  2. T. M. Knowlton, in Circulating fluidized beds, J. R. Grace, A. A. Avidan and T. M. Knowlton Eds., Blackie Academic & Professional, London, UK (1997).

  3. E. U. Hartge, Y. Li and J. Werther, in Circulating fluidized bed technology, P. Basu, Ed., Pergamon Press, Toronto (1986).

  4. J. Wang, Chem. Eng. Sci., 215, 115428 (2020).

    Article  CAS  Google Scholar 

  5. T. Li, S. Benyahia, J. F. Dietiker, J. Musser and X. Sun, Chem. Eng. Sci., 123, 236 (2015).

    Article  CAS  Google Scholar 

  6. S. Cloete, S. T. Johansen and S. Amini, Powder Technol., 239, 21 (2013).

    Article  CAS  Google Scholar 

  7. J. H. Cloete, S. Cloete, S. Radl and S. Amini, Powder Technol., 303, 156 (2016).

    Article  CAS  Google Scholar 

  8. M. T. Shah, R. P. Utikar, V K. Pareek, M. O. Tade and G. M. Evans, Powder Technol., 269, 247 (2015).

    Article  CAS  Google Scholar 

  9. S. Shah, J. Ritvanen, T. Hyppänen and S. Kallio, Powder Technol., 218, 131 (2012).

    Article  CAS  Google Scholar 

  10. E. Peirano, V. Delloume and B. Leckner, Chem. Eng. Sci., 56, 4787 (2001).

    Article  CAS  Google Scholar 

  11. L. Cammarata, P. Lettieri, G. D. M. Micale and D. Colman, Int. J. Chem. Reactor Eng., 1, A48 (2003).

    Article  Google Scholar 

  12. N. Reuge, L. Cadoret, C. Coufort-Saudejaud, S. Pannala M. Syamlal and B. Caussat, Chem. Eng. Sci., 63, 5540 (2008).

    Article  CAS  Google Scholar 

  13. T. W. Asegehegn, M. Schreiber and H. J. Krautz, Powder Technol., 219, 9 (2012).

    Article  CAS  Google Scholar 

  14. N. Xie, F. Battaglia and S. Pannala, Powder Technol., 182, 1 (2008).

    Article  CAS  Google Scholar 

  15. N. Xie, F. Battaglia and S. Pannala, Powder Technol., 182, 14 (2008).

    Article  CAS  Google Scholar 

  16. A. Bakshi, C. Altantzis, A. Bershanska, A. K. Stark and A. F. Ghoniem, Powder Technol., 332, 114 (2018).

    Article  CAS  Google Scholar 

  17. J. Cardoso, V. Silva, D. Eusébio, P. Brito, R. M. Boloy, L. Tarelho and J. L. Silveira, Renewable Energy, 131, 713 (2019).

    Article  Google Scholar 

  18. J. Chang, Z. Wu, X. Wang and W. Liu, Powder Technol., 351, 159 (2019).

    Article  CAS  Google Scholar 

  19. T. Li, S. Pannala and M. Shahnam, Powder Technol., 254, 115 (2014).

    Article  Google Scholar 

  20. Y. J. Cho, W. Namkung, S. D. Kim and S. Park, J. Chem. Eng. Jpn., 27, 158 (1994).

    Article  CAS  Google Scholar 

  21. L. E. Ersoy, M. R. Golriz, M. Koksal and F. Hamdullahpur, Powder Technol., 145, 25 (2004).

    Article  CAS  Google Scholar 

  22. M. Koksal and F. Hamdullahpur, Chem. Eng. Res. Des., 82, 979 (2004).

    Article  CAS  Google Scholar 

  23. W. Namkung and S. D. Kim, Powder Technol., 113, 23 (2000).

    Article  CAS  Google Scholar 

  24. K. Smolders and J. Baeyens, Powder Technol., 119, 269 (2001).

    Article  CAS  Google Scholar 

  25. J. Li, Y. Tung and M. Kwauk, in Circulating fluidized bed technology II, P. Basu and J. F. Large Eds., Pergamon Press, New York, U.S.A. (1988).

  26. A. T. Harris, J. F. Davidson and R. B. Thorpe, AIChE J., 49, 52 (2003).

    Article  CAS  Google Scholar 

  27. J. D. Wilde, G. B. Marin and G. J. Heynderickx, Chem. Eng. Sci., 58, 877 (2003).

    Article  Google Scholar 

  28. S. K. Gupta and F. Berruti, Powder Technol., 108, 21 (2000).

    Article  CAS  Google Scholar 

  29. H. Takeuchi, T. Hirama, T. Chiba, J. Biswas and L. S. Leung, Powder Technol., 47, 195 (1986).

    Article  CAS  Google Scholar 

  30. U. Arena, A. Cammarota and L. Pistone, in Circulating fluidized bed technology, P. Basu, Ed., Pergamon Press, Toronto (1986).

  31. T. B. Anderson and R. Jackson, Ind. Eng. Chem. Fundam., 6, 527 (1967).

    Article  CAS  Google Scholar 

  32. M. Upadhyay and J. H. Park, Powder Technol., 272, 260 (2015).

    Article  CAS  Google Scholar 

  33. S. Benyahia, M. Syamlal and T. J. O’Brien, Powder Technol., 156, 62 (2005).

    Article  CAS  Google Scholar 

  34. B. Jin, X. Wang, W. Zhong, H. Tao, B. Ren and R. Xiao, Energy Fuels, 24, 3159 (2010).

    Article  CAS  Google Scholar 

  35. Y. Zhang, F. Lei, S. Wang, X. Xu and Y. Xiao, Powder Technol., 280, 227 (2015).

    Article  CAS  Google Scholar 

  36. P. C. Johnson and R. Jackson, J. Fluid Mech., 176, 67 (1987).

    Article  CAS  Google Scholar 

  37. M. Upadhyay, M. W. Seo, N. S. Nho and J. H. Park, Comp. Aided Chem. Eng., 37, 695 (2015).

    Article  CAS  Google Scholar 

  38. A. T. Andrews IV, P. N. Loezos and S. Sundaresan, Ind. Eng. Chem. Res., 44, 6022 (2005).

    Article  CAS  Google Scholar 

  39. M. T. Shah, R. P. Utikar, M. O. Tade and V. K. Pareek, Chem. Eng. J., 168, 812 (2011).

    Article  CAS  Google Scholar 

  40. Y. Kang, P. S. Song, J. S. Yun, Y. Y. Jeong and S. D. Kim, Chem. Eng. Commun., 177, 31 (2000).

    Article  CAS  Google Scholar 

  41. M. Koksal and F. Hamdullahpur, Chem. Eng. Commun., 192, 1151 (2005).

    Article  CAS  Google Scholar 

  42. P. R. Naren and V. V. Ranade, Particuology, 9, 121 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was conducted under the framework of the Research and Development Program of the Korea Institute of Energy Research (KIER) (B4-2433-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Myung Won Seo or Jong-Ho Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, M., Seo, M.W., Naren, P.R. et al. Experiment and multiphase CFD simulation of gas-solid flow in a CFB reactor at various operating conditions: Assessing the performance of 2D and 3D simulations. Korean J. Chem. Eng. 37, 2094–2103 (2020). https://doi.org/10.1007/s11814-020-0646-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0646-7

Keywords

Navigation