Skip to main content
Log in

Assessing Porosity in Selective Electron Beam Melting Manufactured Ti–6Al–4V by Nonlinear Impact Modulation Spectroscopy

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Selective electron beam melting (SEBM) is an additive manufacturing process for the production of complex metallic parts. To optimize their mechanical properties, pores and fusion defects, since not completely avoidable, have to be detected and evaluated. The generated microstructure may contain not only voids, but also weak bonds, sharp interfaces and loose particles causing nonlinear elasticity. This paper reports on Nonlinear Impact Modulation Spectroscopy (NIMS) experiments applied to a set of Ti–6Al–4V samples, each of which contains an internal zone with well-defined porosity ranging from 0.2 to 20%, respectively. Resonance spectra, attenuation and indicators of material nonlinearity were evaluated, which allowed the localization, dimensioning and assessment of porous zones. Properties of used linear and nonlinear methods are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. SpaceX Launches 3D-Printed Part to Space, Creates Printed Engine Chamber n.d. https://www.spacex.com/news/2014/07/31/spacex-launches-3d-printed-part-space-creates-printed-engine-chamber-crewed Accessed 25 Sep 2019.

  2. Parthasarathy, J., Starly, B., Raman, S., Christensen, A.: Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J. Mech Behav. Biomed. Mater. 3, 249–259 (2010). https://doi.org/10.1016/J.JMBBM.2009.10.006

    Article  Google Scholar 

  3. Ponader, S., von Wilmowsky, C., Widenmayer, M., Lutz, R., Heinl, P., Körner, C., et al.: In vivo performance of selective electron beam-melted Ti-6Al-4V structures. J. Biomed. Mater. Res. Part A 92A, 56–62 (2010). https://doi.org/10.1002/jbm.a.32337

    Article  Google Scholar 

  4. Bugatti-World premiere: brake caliper from 3-D printer n.d. https://www.bugatti.com/media/news/2018/world-premiere-brake-caliper-from-3-d-printer/. Accessed 25 Sep 2019.

  5. Gong, H., Rafi, K., Gu, H., Janaki Ram, G.D., Starr, T., Stucker, B.: Influence of defects on mechanical properties of Ti–6Al–4 V components produced by selective laser melting and electron beam melting. Mater. Des. 86, 545–554 (2015). https://doi.org/10.1016/J.MATDES.2015.07.147

    Article  Google Scholar 

  6. DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., et al.: Additive manufacturing of metallic components–process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  Google Scholar 

  7. Guyer, R.A., McCall, K.R.R., Boitnott, G.N.: Hysteresis, discrete memory, and nonlinear wave propagation in rock: a new paradigm. Phys. Rev. Lett. 74, 3491–3494 (1995). https://doi.org/10.1103/PhysRevLett.74.3491

    Article  Google Scholar 

  8. Johnson, P.A., Sutin, A.M.: Slow dynamics and anomalous nonlinear fast dynamics in diverse solids. J. Acoust. Soc. Am. 117, 124 (2005). https://doi.org/10.1121/1.1823351

    Article  Google Scholar 

  9. Van Den Abeele, K.E.A., Sutin, A.M., Carmeliet, J., Johnson, P.A.: Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS). NDT&E Int. 34, 239–248 (2001). https://doi.org/10.1016/S0963-8695(00)00064-5

    Article  Google Scholar 

  10. Antonaci, P., Bruno, C.L.E.E., Gliozzi, A.S., Scalerandi, M., Bocca, P.G.: Monitoring evolution of compressive damage in concrete with linear and nonlinear ultrasonic methods. Cem. Concr. Res. 40, 1106–1113 (2010). https://doi.org/10.1016/j.cemconres.2009.09.014

    Article  Google Scholar 

  11. Liu, P., Sohn, H., Kundu, T.: Fatigue crack localization using laser nonlinear wave modulation spectroscopy (LNWMS). J. Korean Soc. Nondestruct. Test. 34, 419–427 (2014). https://doi.org/10.7779/JKSNT.2014.34.6.419

    Article  Google Scholar 

  12. Potter, J.N., Croxford, A.J., Wilcox, P.D.: Nonlinear ultrasonic phased array imaging. Phys. Rev. Lett. 113, 1–5 (2014). https://doi.org/10.1103/PhysRevLett.113.144301

    Article  Google Scholar 

  13. Ohara, Y., Nakajima, H., Haupert, S., Tsuji, T., Mihara, T.: Nonlinear ultrasonic phased array with fixed-voltage fundamental wave amplitude difference for high-selectivity imaging of closed cracks. J. Acoust. Soc. Am. 146, 266–277 (2019). https://doi.org/10.1121/1.5116017

    Article  Google Scholar 

  14. Scalerandi, M., Bentahar, M., Mechri, C.: Conditioning and elastic nonlinearity in concrete: separation of damping and phase contributions. Constr. Build. Mater. 161, 208–220 (2018). https://doi.org/10.1016/j.conbuildmat.2017.11.035

    Article  Google Scholar 

  15. Jin, J., Rivière, J., Ohara, Y., Shokouhi, P.: Dynamic acousto-elastic response of single fatigue cracks with different microstructural features: an experimental investigation. J. Appl. Phys. 124, 075303 (2018). https://doi.org/10.1063/1.5036531

    Article  Google Scholar 

  16. Van Den Abeele, K.E.A., Carmeliet, J., TenCate, J.A., Johnson, P.A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part II: single-mode nonlinear resonance acoustic spectroscopy. Res. Nondestruct. Eval. 12, 31–42 (2000). https://doi.org/10.1080/09349840009409647

    Article  Google Scholar 

  17. Van Den Abeele, K.E.A., Johnson, P.A., Sutin, A.M.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: nonlinear wave modulation spectroscopy (NWMS). Res. Nondestruct. Eval. 12, 17–30 (2000). https://doi.org/10.1007/s001640000002

    Article  Google Scholar 

  18. Eiras, J.N.N., Vu, Q.A.A., Lott, M., Payá, J., Garnier, V., Payan, C.: Dynamic acousto-elastic test using continuous probe wave and transient vibration to investigate material nonlinearity. Ultrasonics 69, 29–37 (2016). https://doi.org/10.1016/j.ultras.2016.03.008

    Article  Google Scholar 

  19. Carrión, A., Genovés, V., Pérez, G., Payá, J., Gosálbez, J.: Flipped accumulative non-linear single impact resonance acoustic spectroscopy (FANSIRAS): a novel feature extraction algorithm for global damage assessment. J. Sound. Vib. 432, 454–469 (2018). https://doi.org/10.1016/j.jsv.2018.06.031

    Article  Google Scholar 

  20. Renaud, G., Le Bas, P.-Y., Johnson, P.A.: Revealing highly complex elastic nonlinear (anelastic) behavior of Earth materials applying a new probe: Dynamic acoustoelastic testing. J. Geophys. Res. 117, B06202 (2012). https://doi.org/10.1029/2011JB009127

    Article  Google Scholar 

  21. Rivière, J., Remillieux, M.C., Ohara, Y., Anderson, B.E., Haupert, S., Ulrich, T.J., et al.: Dynamic acousto-elasticity in a fatigue-cracked sample. J. Nondestruct. Eval. 33, 216–225 (2014). https://doi.org/10.1007/s10921-014-0225-0

    Article  Google Scholar 

  22. Kober, J., Prevorovsky, Z.: Theoretical investigation of nonlinear ultrasonic wave modulation spectroscopy at crack interface. NDT&E Int 61, 10–15 (2014). https://doi.org/10.1016/j.ndteint.2013.09.001

    Article  Google Scholar 

  23. Haupert, S., Renaud, G., Rivière, J., Talmant, M., Johnson, P.A., Laugier, P.: High-accuracy acoustic detection of nonclassical component of material nonlinearity. J. Acoust. Soc. Am. 130, 2654–2661 (2011). https://doi.org/10.1121/1.3641405

    Article  Google Scholar 

  24. Genovés, V., Riestra, C., Borrachero, M.V., Eiras, J., Kundu, T., Payá, J.: Multimodal analysis of GRC ageing process using nonlinear impact resonance acoustic spectroscopy. Compos. Part B 76, 105–111 (2015). https://doi.org/10.1016/J.COMPOSITESB.2015.02.020

    Article  Google Scholar 

  25. TenCate, J.A., Pasqualini, D., Habib, S., Heitmann, K., Higdon, D., Johnson, P.A.: Nonlinear and nonequilibrium dynamics in geomaterials. Phys. Rev. Lett. 93, 2–5 (2004). https://doi.org/10.1103/PhysRevLett.93.065501

    Article  Google Scholar 

  26. Bentahar, M., El Guerjouma, R., Idjimarene, S., Scalerandi, M., Idijmarene, S., Scalerandi, M.: Influence of noise on the threshold for detection of elastic nonlinearity. J. Appl. Phys. 113, 043516 (2013). https://doi.org/10.1063/1.4789800

    Article  Google Scholar 

  27. Jin, J., Moreno, M.G., Riviere, J., Shokouhi, P.: Impact-based nonlinear acoustic testing for characterizing distributed damage in concrete. J. Nondestruct. Eval. 36, 1–16 (2017). https://doi.org/10.1007/s10921-017-0428-2

    Article  Google Scholar 

Download references

Acknowledgements

Alena Kruisova, Milan Chlada, Jan Kober and Zdenek Prevorovsky were funded by the Grant Agency of the Czech Republic (GA19-14237S) and institutional support RVO: 61388998. The work of Sigrun Hirsekorn was supported by the European Regional Development Fund under Grant No.CZ.02.1.01/0.0/0.0/15_003/0000493 (Centre of Excellence for Nonlinear Dynamic Behaviour of Advanced Materials in Engineering).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kober.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kober, J., Kirchner, A., Kruisova, A. et al. Assessing Porosity in Selective Electron Beam Melting Manufactured Ti–6Al–4V by Nonlinear Impact Modulation Spectroscopy. J Nondestruct Eval 39, 86 (2020). https://doi.org/10.1007/s10921-020-00731-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-020-00731-z

Keywords

Navigation