Skip to main content
Log in

Heat Treatment of 2024 and 5083 Aluminum Materials by Induction, a Competitive Method, and Cost Analysis

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In the study, 2024 Al and 5083 Al bulk samples were heated using two different methods, induction and conventional heat treatment. Using these methods, the processing cost and time analysis for both materials were performed. 5083 Al material cannot be heat-treated. However, to evaluate differences in the production cost of induction by changing the components of aluminum, the same procedures were applied to 5083 Al material. In both aluminum series, square, cylindrical, and hexagonal shapes were processed, and the effect of sample shape variations on cost was evaluated. The heat treatment was performed in a conventional kiln of 2 kW. Al materials were heat-treated for 5 h at 540 °C, and water was suddenly supplied. Then they were left in the kiln at 190 °C for 10 h for artificial aging. Al samples were heat-treated in the same way at 590 °C for 1 minute in the 900 kHz ultra-high frequency induction heating system (UHFIHS), which was fed with instant water. The samples were then artificially aged at four different heating durations varying between 2 and 8 minutes using the induction system. As a result of examining the production time and cost of both methods, it was found that the heat treatment of 2024 Al samples by induction was much more advantageous. Furthermore, when Al samples were heated by induction, shape differences and main alloy elements significantly affected power consumption values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H.K. Durmus, A. Okur, C. Meric, Pamukkale University Journal of Engineering Sciences 9(1), 9 (2003)

    Google Scholar 

  2. A.A.C. Silva, T. Gomes, B.D.P. Martins, R.B.R. Garcia,·, L.D.S. Cividanes,· E.Y. Kawachi, JIOP 30, 3105 (2020)

    CAS  Google Scholar 

  3. B. Javanpour,·M. M. Azadbeh, J.O.I.P. Mozammel (2020) https://doi.org/10.1007/s10904-020-01557-y

  4. T. Şişmanoğlu, Diss. Institute of Science, (2009)

  5. M. Gobara, S. Elbasuney, A. Baraka, H. Kamal, M. Elsayed, E.A. McNally, JOIP 28, 1598 (2018)

    CAS  Google Scholar 

  6. H. Kaçar, E. Atik, C. Meriç, J. Mater. Process. Technol. 142(3), 762 (2003)

    Article  Google Scholar 

  7. Y.S. Hedberg, S. Pradhan, F. Cappellini, M.E. Karlsson, E. Blomberg, H.L. Karlsson, J.F.Hedberg,. Electrochimica Acta 212, 360 (2016)

    Article  CAS  Google Scholar 

  8. O.B. Umaru, M. Abdulwahab, A. Tokan, A.M. Bello, H.A. Umar, Results in Physics 6, 342–345 (2016)

    Article  Google Scholar 

  9. S.C. Vettivel, N. Selvakumar, P.V. Ponraj, Procedia Eng. 38, 2874 (2012)

    Article  CAS  Google Scholar 

  10. B. Ahuja, M. Karg, K.Y. Nagulin, M. Schmidt, Physics Procedia 56, 135 (2014)

    Article  CAS  Google Scholar 

  11. M. Sachs, O. Hentschel, J. Schmidt, M. Karg, M. Schmidt, K.E. Wirth, Physics Procedia 56, 125 (2014)

    Article  CAS  Google Scholar 

  12. S.B. Hassan, V.S. Aigbodion, Journal of King Saud University-Engineering Sciences 27(1), 49 (2015)

    Article  Google Scholar 

  13. N. Ponweiser, C.L. Lengauer, K.W. Richter, Intermetallics 19(11), 1737 (2011)

    Article  CAS  Google Scholar 

  14. M.H. Shaeri, M. Shaeri, M. Ebrahimi, M.T. Salehi, S.H. Seyyedein, S. H. (Progress in Natural Science: Materials International 26(2), 182 (2016)

    Article  CAS  Google Scholar 

  15. M. Chemingui, G. Mesmacque, A.W. Kolsi, Physics Procedia 2(3), 1167 (2009)

    Article  CAS  Google Scholar 

  16. C. Lei, H. Yang, H. Li, N. Shi, J. Fu, L. Zhan, L. Chin. J. Aeronaut. 29(5), 1445 (2016)

    Article  Google Scholar 

  17. H. Mirzadeh, J. Magn. Alloys 2, 22 (2014)

    Article  Google Scholar 

  18. Z. Wang, P. Chen, H. Li, B. Fang, R. Song, Z. Zheng, Corros. Sci. 114, 156 (2017)

    Article  CAS  Google Scholar 

  19. N.E. Bekheet, R.M. Gadelrab, M.F. Salah, A.A. El-Azim, Materials & Design 23(2), 153 (2002)

    Article  CAS  Google Scholar 

  20. M.H. Goodarzy, H. Arabi, H. Boutorabi, M.A. Seyedein, S. H., & S.H. Najafabadi, The effects of room temperature ECAP and subsequent aging on mechanical properties of 2024 Al alloy. J. Alloy. Compd. 585, 753–759 (2014)

    Article  CAS  Google Scholar 

  21. U. Cavdar, E. Atik, JOM, 66, I. 6, 1027, (2014)

  22. M. Tastan, H. Gökozan, S. Taşkın, U. Cavdar, Revista de Metalurgia 51(3), e046 (2015)

    Article  Google Scholar 

  23. H. Gokozan, M. Tastan, S. Taskin, P. Sarı, Cavdar, U. Cavdar Materials Testing. 58, 11–12 (2016) 1009

    Google Scholar 

  24. U. Cavdar, İ Gülşahin, Revista de Metalurgia 50(2), e016 (2014)

    Article  Google Scholar 

  25. U. Cavdar, E. Yalamac, İ Gulsahin, Materials Testing 56(10), 852 (2014)

    Article  CAS  Google Scholar 

  26. U. Cavdar, I.M. Kusoglu, Materials Testing 56, 11–12 (2014) 973

    Google Scholar 

  27. P. Sari Cavdar, U. Cavdar, Revista de Metalurgia 51(1), e036 (2015)

    Article  Google Scholar 

  28. A. Altintas, U. Cavdar, I.M. Kusoglu, JOIP 29, 667 (2019)

    CAS  Google Scholar 

  29. M. Tastan, H. Gokozan, P. Sarı Cavdar, G. Soy, U. Cavdar, Revista de MEtalurgia 55, 1, e137 (2019)

    Article  Google Scholar 

  30. U. Cavdar, L.U. Gezici, B. Gul, M. Ayvaz, Revista de Metalurgia 56, 1, e163 (2020)

    Article  Google Scholar 

  31. U. Cavdar, I.M. Kusoglu, A. Altintas, Materials Testing 60, 7–8 (2018) 727

    Google Scholar 

  32. U. Cavdar, A. Altintas, B. Karaca, Kovove Materialy 56(3), 177 (2018)

    Article  CAS  Google Scholar 

  33. S. Taskin, H. Gokozan, ElektronikaIr Elektrotechnika 108, 2, 75, (2011)

  34. H. Gokozan, S. Taskin, S. Seker, H. Ekiz, Electr. Eng. 97(2), 111 (2014)

    Article  Google Scholar 

  35. A. Özdemir, M. Taştan, Math. Probl. Eng. (ID 501781, 1 (2014)

    Google Scholar 

  36. M.H. Goodarzy, H. Arabi, M.A. Boutorabi, S.H. Seyedein, S.H. Hasani, Najafabadi, J. Alloy. Compd. 585, 753–759 (2014)

    Article  CAS  Google Scholar 

  37. Z. Huda, N.I. Taib, T. Zaharinie, Mater. Chem. Phys. 113, 515–517 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The ultra-high frequency induction system used in this study was provided by FBE 2012-022 Celal Bayar University BAP Project and 214M414 TUBİTAK Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uğur Çavdar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çavdar, U., Taştan, M., Gökozan, H. et al. Heat Treatment of 2024 and 5083 Aluminum Materials by Induction, a Competitive Method, and Cost Analysis. J Inorg Organomet Polym 31, 1754–1763 (2021). https://doi.org/10.1007/s10904-020-01813-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01813-1

Keywords

Navigation