Skip to main content
Log in

Improve the production of d-limonene by regulating the mevalonate pathway of Saccharomyces cerevisiae during alcoholic beverage fermentation

  • Metabolic Engineering and Synthetic Biology - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

d-Limonene, a cyclized monoterpene, possesses citrus-like olfactory property and multi-physiological functions, which can be used as a bioactive compound and flavor to improve the overall quality of alcoholic beverages. In our previous study, we established an orthogonal pathway of d-limonene synthesis by introducing neryl diphosphate synthase 1 (tNDPS1) and d-limonene synthase (tLS) in Saccharomyces cerevisiae. To further increase d-limonene formation, the metabolic flux of the mevalonate (MVA) pathway was enhanced by overexpressing the key genes tHMGR1, ERG12, IDI1, and IDI1WWW, respectively, or co-overexpressing. The results showed that strengthening the MVA pathway significantly improved d-limonene production, while the best strain yielded 62.31 mg/L d-limonene by co-expressing tHMGR1, ERG12, and IDI1WWW genes in alcoholic beverages. Furthermore, we also studied the effect of enhancing the MVA pathway on the growth and fermentation of engineered yeasts during alcoholic beverage fermentation. Besides, to further resolve the problem of yeast growth inhibition, we separately investigated transporter proteins of the high-yielding d-limonene yeasts and the parental strain under the stress of different d-limonene concentration, suggesting that the transporters of Aus1p, Pdr18p, Pdr5p, Pdr3p, Pdr11p, Pdr15p, Tpo1p, and Ste6p might play a more critical role in alleviating cytotoxicity and improving the tolerance to d-limonene. Finally, we verified the functions of three transporter proteins, finding that the transporter of Aus1p failed to transport d-limonene, and the others (Pdr5p and Pdr15p) could improve the tolerance of yeast to d-limonene. This study provided a valuable platform for other monoterpenes’ biosynthesis in yeast during alcoholic beverage fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kang WH, Xu Y (2011) Review on aroma compounds and its formation mechanism in Chinese liquors. J Beijing Technol Bus Univ (Nat Sci Ed) 30:55–60 ((in Chinese))

    Google Scholar 

  2. Guo XW, Fan ED, Ma BT, Li ZX, Zhang YH, Zhang ZM, Chen YF, Xiao DG (2019) Research progress on trace components of Chinese Baijiu. Food Sci. https://doi.org/10.7506/spkx1002-6630-20190704-065 ((in Chinese))

    Article  Google Scholar 

  3. Fan WL, Xu Y (2007) The review of the research of aroma compounds in Chinese liquors. Liquor Mak 34:31–37. https://doi.org/10.3969/j.issn.1002-8110.2007.04.013 ((in Chinese))

    Article  CAS  Google Scholar 

  4. Li W, Wang JH, Zhang CY, Ma HX, Xiao DG (2017) Regulation of Saccharomyces cerevisiae genetic engineering on the production of acetate esters and higher alcohols during Chinese Baijiu fermentation. J Ind Microbiol Biot 44:949–960. https://doi.org/10.1007/s10295-017-1907-2

    Article  CAS  Google Scholar 

  5. Wu ZY, Qin D, Li YM, Li HH, Sum JJ, Sun XT (2018) Research progress on ferulic acid in alcoholic beverages. China Brew 37:1–6. https://doi.org/10.11882/j.issn.0254-5071.2018.11.001 ((in Chinese))

    Article  Google Scholar 

  6. Fan WL, Hu GY, Xu Y (2012) Quantification of volatile terpenoids in Chinese medicinal liquor using headspace-solid phase microextraction coupled with gas chromatography-mass spectrometry. Food Sci 33:110–116 ((in Chinese))

    CAS  Google Scholar 

  7. Ding HL, Ao L, Deng B, Ao ZH, Song Ch, Liu M, Lin F (2018) Analysis of trace healthy components of Chinese Baijiu. ChnBrw 37:11–14. https://doi.org/10.11882/j.issn.0254-5071 ((in Chinese))

    Article  Google Scholar 

  8. Wu JH, Huang MQ, Zheng FP, Sun JY, Li HH, Sun XT, Sun BG (2019) Research progress of healthy Baijiu. J Food Sci Tech 37:17–23. https://doi.org/10.11882/j.issn.0254-5071.2017.05.004 ((in Chinese))

    Article  Google Scholar 

  9. Mamidipally PK, Liu SX (2004) First approach on rice bran oil extraction using limonene. Eur J Lipid Sci Tech 106:122–125. https://doi.org/10.1002/ejlt.200300891

    Article  CAS  Google Scholar 

  10. Cao T, Liu XY, Ding X, Bai WD, Zeng XF, Deng QH, Ren JP, Gu ZhD (2017) Advances in research and application of limonene. Farm Prod Process 8:51–54 ((in Chinese))

    Google Scholar 

  11. Miller JA, Thompson PA, Hakim IA, Chow HHS, Thomson CA (2010) d-Limonene: a bioactive food component from citrus and evidence for a potential role in breast cancer prevention and treatment. Oncol Rev 5:31–42. https://doi.org/10.1007/s12156-010-0066-8

    Article  Google Scholar 

  12. Sun JD (2007) D-Limonene safety and clinical applications. Altern Med Rev 12:259–263. https://doi.org/10.0000/PMID18072821

    Article  PubMed  Google Scholar 

  13. Hac-Wydro K, Flasinski M, Romanczuk K (2017) Essential oils as food eco-preservatives: model system studies on the effect of temperature on limonene antibacterial activity. Food Chem 235:127–135. https://doi.org/10.1016/j.foodchem.2017.05.051

    Article  CAS  PubMed  Google Scholar 

  14. Baschieri A, Ajvazi MD, Tonfack JLF, Valgimigli L, Amorati R (2017) Explaining the antioxidant activity of some common non-phenolic components of essential oils. Food Chem 232:656–663. https://doi.org/10.1016/j.foodchem.2017.04.036

    Article  CAS  PubMed  Google Scholar 

  15. Zahi MR, El Hattab M, Liang H, Yuan Q (2017) Enhancing the antimicrobial activity of d-limonene nanoemulsion with the inclusion of epsilon-polylysine. Food Chem 221:18–23. https://doi.org/10.1016/j.foodchem.2016.10.037

    Article  CAS  PubMed  Google Scholar 

  16. Jiang GZ, Yao MD, Wang Y, Zhou L, Song TQ, Liu H, Xiao WH, Yuan YJ (2017) Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae. Metab Eng 41:57–66. https://doi.org/10.1016/j.ymben.2017.03.005

    Article  CAS  PubMed  Google Scholar 

  17. Wu T, Li SW, Zhang BL, Bi CH, Zhang XL (2018) Engineering Saccharomyces cerevisiae for the production of the valuable monoterpene ester geranyl acetate. Microb Cell Fact 17:1–10. https://doi.org/10.1186/s12934-018-0930-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ignea C, Pontini M, Maffei ME, Makris AM, Kampranis SC (2014) Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase. ACS Synth Biol 3:298–306. https://doi.org/10.1021/sb400115e

    Article  CAS  PubMed  Google Scholar 

  19. Cao X, Lv YB, Chen J, Imanaka T, Wei LJ, Hua Q (2016) Metabolic engineering of oleaginous yeast Yarrowia lipolytica for limonene overproduction. Biotechnol Biofuels 9:214. https://doi.org/10.1186/s13068-016-0626-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng S, Liu X, Jiang G, Wu J, Zhang JL, Lei D, Yuan YJ, Qiao J, Zhao GR (2019) Orthogonal engineering of biosynthetic pathway for efficient production of limonene in Saccharomyces cerevisiae. ACS Synth Biol 8:968–975. https://doi.org/10.1021/acssynbio.9b00135

    Article  CAS  PubMed  Google Scholar 

  21. Schilmiller AL, Schauvinhold I, Larson M, Xu R, Charbonneau AL, Schmidt A, Wilkerson C, Last RL, Pichersky E (2009) Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc Natl Acad Sci USA 106:10865–10870. https://doi.org/10.1073/pnas.0904113106

    Article  PubMed  Google Scholar 

  22. Hu ZH, Lin LC, Li HX, Li P, Weng YR, Zhang CY, Yu AQ, Xiao DG (2020) Engineering Saccharomyces cerevisiae for production of the valuable monoterpene d-limonene during Chinese Baijiu fermentation. J Ind Microbiol Biot. https://doi.org/10.1007/s10295-020-02284-6

    Article  Google Scholar 

  23. Liu J, Zhang W, Du G, Chen J, Zhou J (2013) Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae. J Biotechnol 168:446–451. https://doi.org/10.1016/j.jbiotec.2013.10.017

    Article  CAS  PubMed  Google Scholar 

  24. Xie WP, Lv XM, Ye LD, Zhou PP, Yu HW (2015) Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metab Eng 30:69–78. https://doi.org/10.1016/j.ymben.2015.04.009

    Article  CAS  PubMed  Google Scholar 

  25. Chen H, Liu C, Li M, Zhang H, Xian M, Liu H (2018) Directed evolution of mevalonate kinase in Escherichia coli by random mutagenesis for improved lycopene. RSC Adv 8:15021–15028. https://doi.org/10.1039/c8ra01783b

    Article  CAS  Google Scholar 

  26. Chen H, Li M, Liu C, Zhang H, Xian M, Liu H (2018) Enhancement of the catalytic activity of Isopentenyl diphosphate isomerase (IDI) from Saccharomyces cerevisiae through random and site-directed mutagenesis. Microb Cell Fact 17:65. https://doi.org/10.1186/s12934-018-0913-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scalcinati G, Knuf C, Partow S, Chen Y, Maury J, Schalk M, Daviet L, Nielsen J, Siewers V (2012) Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene α-santalene in a fed-batch mode. Metab Eng 14:91–103. https://doi.org/10.1016/j.ymben.2012.01.007

    Article  CAS  PubMed  Google Scholar 

  28. Brown S, Clastre M, Courdavault V, O’Connor SE (2015) De novo production of the plant-derived alkaloid strictosidine in yeast. Proc Natl Acad Sci USA 112:3205–3210. https://doi.org/10.1073/pnas.1423555112

    Article  CAS  PubMed  Google Scholar 

  29. Asadollahi MA, Maury J, Schalk M, Clark A, Nielsen J (2010) Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae. Biotechnol Bioeng 106:86–96. https://doi.org/10.1002/bit.22668

    Article  CAS  PubMed  Google Scholar 

  30. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943. https://doi.org/10.1038/nature04640

    Article  CAS  PubMed  Google Scholar 

  31. Anthony JR, Anthony LC, Nowroozi F, Kwon G, Newman JD, Keasling JD (2009) Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab Eng 11:13–19. https://doi.org/10.1016/j.ymben.2008.07.007

    Article  CAS  PubMed  Google Scholar 

  32. Berthelot K, Estevez Y, Deffieux A, Peruch F (2012) Isopentenyl diphosphate isomerase: a checkpoint to isoprenoid biosynthesis. Biochimie 94:1621–1634. https://doi.org/10.1016/j.biochi.2012.03.021

    Article  CAS  PubMed  Google Scholar 

  33. Zhang L, Xiao WH, Wang Y, Yao MD, Jiang GZ, Zeng BX, Zhang RS, Yuan YJ (2017) Chassis and key enzymes engineering for monoterpenes production. Biotechnol Adv 35:1022–1031. https://doi.org/10.1016/j.biotechadv.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  34. Rau MH, Calero P, Lennen RM, Long KS, Nielsen AT (2016) Genome-wide Escherichia coli stress response and improved tolerance towards industrially relevant chemicals. Microb Cell Fact 15:176. https://doi.org/10.1186/s12934-016-0577-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Turner WJ, Dunlop MJ (2015) Trade-offs in improving biofuel tolerance using combinations of efflux pumps. ACS Synth Biol 4:1056–1063. https://doi.org/10.1021/sb500307w

    Article  CAS  PubMed  Google Scholar 

  36. Hu F, Liu J, Du G, Hua Z, Zhou J, Chen J (2012) Key cytomembrane ABC transporters of Saccharomyces cerevisiae fail to improve the tolerance to D-limonene. Biotechnol Lett 34:1505–1509. https://doi.org/10.1007/s10529-012-0931-6

    Article  CAS  PubMed  Google Scholar 

  37. Liu J, Zhu Y, Du G, Zhou J, Chen J (2013) Response of Saccharomyces cerevisiae to D-limonene-induced oxidative stress. Appl Microbiol Biot 97:6467–6475. https://doi.org/10.1007/s00253-013-4931-9

    Article  CAS  Google Scholar 

  38. Sipos G, Kuchler K (2006) Fungal ATP-binding cassette (ABC) transporters in drug resistance & detoxification. Curr Drug Targets 7:471–481. https://doi.org/10.2174/138945006776359403

    Article  CAS  PubMed  Google Scholar 

  39. Coleman JJ, White GJ, Rodriguez-Carres M, Vanetten HD (2011) An ABC transporter and a cytochrome P450 of Nectria haematococcaMPVI are virulence factors on pea and are the major tolerance mechanisms to the phytoalexin pisatin. Mol Plant Microbe In 24:368–376. https://doi.org/10.1094/MPMI-09-10-0198

    Article  CAS  Google Scholar 

  40. Taglicht D, Michaelis S (1998) Saccharomyces cerevisiae ABC proteins and their relevance to human health and disease. Method Enzymol 292:130–162. https://doi.org/10.1016/S0076-6879(98)92012-2

    Article  CAS  Google Scholar 

  41. Schuller C, Mamnun YM, Wolfger H, Rockwell N, Thorner J, Kuchler K (2007) Membrane-active compounds activate the transcription factors Pdr1 and Pdr3 connecting pleiotropic drug resistance and membrane lipid homeostasis in Saccharomyces cerevisiae. Mol Biol Cell 18:4932–4944. https://doi.org/10.1091/mbc.E07-06-0610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Remy E, Niño-González M, Godinho CP, Cabrito TR, Teixeira MC, Sá-Correia I, Duque P (2017) Heterologous expression of the yeast Tpo1p or Pdr5p membrane transporters in Arabidopsis confers plant xenobiotic tolerance. Sci Rep UK 7(1):4529

    Article  Google Scholar 

  43. Wang Y, Lim L, DiGuistini S, Robertson G, Bohlmann J, Breuil C (2013) A specialized ABC efflux transporter GcABC-G1 confers monoterpene resistance to Grosmannia clavigera, a bark beetle-associated fungal pathogen of pine trees. New Phytol 197:886–898. https://doi.org/10.1111/nph.12063

    Article  CAS  PubMed  Google Scholar 

  44. Andrews RE, Parks LW, Spence KD (1980) Some effects of douglas fir terpenes on certain microorganisms. Appl Environ Microb 40:301–304

    Article  CAS  Google Scholar 

  45. Uribe S, Pena A (1990) Toxicity of allelopathic monoterpene suspensions on yeast dependence on droplet size. J Chem Ecol 16:1399–1408. https://doi.org/10.1007/bf01021035

    Article  CAS  PubMed  Google Scholar 

  46. Uribe S, Ramirez J, Pena A (1985) Effects of beta-pinene on yeast membrane functions. J Bacteriol 161:1195–1200

    Article  CAS  Google Scholar 

  47. Prashar A, Hili P, Veness RG, Evans CS (2003) Antimicrobial action of palmarosa oil (Cymbopogon martinii) on Saccharomyces cerevisiae. Phytochemistry 63:569–575. https://doi.org/10.1016/s0031-9422(03)00226-7

    Article  CAS  PubMed  Google Scholar 

  48. Brennan TC, Kromer JO, Nielsen LK (2013) Physiological and transcriptional responses of Saccharomyces cerevisiae to d-limonene show changes to the cell wall but not to the plasma membrane. Appl Environ Microb 79:3590–3600. https://doi.org/10.1128/aem.00463-13

    Article  CAS  Google Scholar 

  49. Parveen M, Hasan MK, Takahashi J, Murata Y, Kitagawa E, Kodama O, Iwahashi H (2004) Response of Saccharomyces cerevisiae to a monoterpene: evaluation of antifungal potential by DNA microarray analysis. J Antimicrob Chemother 54:46–55. https://doi.org/10.1093/jac/dkh245

    Article  CAS  PubMed  Google Scholar 

  50. HortonRM HHD, Ho SN, Pullen JK, Pease LR (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77:61–68. https://doi.org/10.1016/0378-1119(89)90359-4

    Article  Google Scholar 

  51. Colby SM, Alonso WR, Katahira EJ, McGarvey DJ, Croteau R (1993) 4S-limonene synthase from the oil glands of spearmint (Mentha spicata). cDNA isolation, characterization, and bacterial expression of the catalytically active monoterpene cyclase. J Biol Chem 268(31):23016–23024

    CAS  PubMed  Google Scholar 

  52. Gutensohn M, Nguyen TT, McMahon RD, Kaplan I, Pichersky E, Dudareva N (2014) Metabolic engineering of monoterpene biosynthesis in tomato fruits via introduction of the non-canonical substrate neryl diphosphate. Metab Eng 24:107–116. https://doi.org/10.1016/j.ymben.2014.05.008

    Article  CAS  PubMed  Google Scholar 

  53. Gietz RD, Schiestl RH (2007) Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:38–41. https://doi.org/10.1038/nprot.2007.15

    Article  CAS  PubMed  Google Scholar 

  54. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336–4343. https://doi.org/10.1093/nar/gkt135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ma B, Liu M, Li ZH, Tao X, Wei DZ, Wang FQ (2019) Significantly enhanced production of patchoulol in metabolically engineered Saccharomyces cerevisiae. J Agr Food Chem 67:8590–8598. https://doi.org/10.1021/acs.jafc.9b03456

    Article  CAS  Google Scholar 

  56. Cui DY, Zhang Y, Xu J, Zhang CY, Li W, Xiao DG (2018) PGK1 promoter library for the regulation of acetate ester production in Saccharomyces cerevisiae during Chinese Baijiu fermentation. J Agr Food Chem 66:7417–7427. https://doi.org/10.1021/acs.jafc.8b02114

    Article  CAS  Google Scholar 

  57. Beltran G, Esteve-Zarzoso B, Rozès N, Mas A, Guillamoa JM (2005) Influence of the timing of nitrogen additions during synthetic grape must fermentations on fermentation kinetics and nitrogen consumption. J Agr Food Chem 53:996–1002. https://doi.org/10.1021/jf0487001

    Article  CAS  Google Scholar 

  58. Barbosa C, Falco V, Mendes-Faia A, Mendes-Ferreira A (2009) Nitrogen addition influences formation of aroma compounds, volatile acidity and ethanol in nitrogen deficient media fermented by Saccharomyces cerevisiae wine strains. J BiosciBioeng 108:99–104. https://doi.org/10.1016/j.jbiosc.2009.02.017

    Article  CAS  Google Scholar 

  59. Vidal EE, de Billerbeck GM, Simoes DA, Schuler A, Francois JM, de Morais MA Jr (2013) Influence of nitrogen supply on the production of higher alcohols/esters and expression of flavour-related genes in cachaca fermentation. Food Chem 138:701–708. https://doi.org/10.1016/j.foodchem.2012.10.147

    Article  CAS  PubMed  Google Scholar 

  60. Kobayashi M, Shimizu H, Shioya S (2008) Beer volatile compounds and their application to low-malt beer fermentation. J BioscBioeng 106:317–323. https://doi.org/10.1263/jbb.106.317

    Article  CAS  Google Scholar 

  61. Zhao J, Bao X, Li C, Shen Y, Hou J (2016) Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 100:4561–4571. https://doi.org/10.1007/s00253-016-7375-1

    Article  CAS  PubMed  Google Scholar 

  62. Dai Z, Liu Y, Zhang X, Shi M, Wang B, Wang D, Huang L, Zhang X (2013) Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab Eng 20:146–156. https://doi.org/10.1016/j.ymben.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  63. Lv XM, Wang F, Zhou PP, Ye LD, Xie WP, Xu HM, Yu HW (2016) Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae. Nat Commun 7:12851. https://doi.org/10.1038/ncomms12851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ignea C, Cvetkovic I, Loupassaki S, Kefalas P, Johnson CB, Kampranis SC, Makris AM (2011) Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids. Microb Cell Fact 10(1):4–22. https://doi.org/10.1186/1475-2859-10-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhou YJ, Gao W, Rong Q, Jin G, Chu H, Liu W, Yang W, Zhu Z, Li G, Zhu G (2012) Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc 134:3234–3241. https://doi.org/10.1021/ja2114486

    Article  CAS  PubMed  Google Scholar 

  66. De Ruyck J, Wouters J, Poulter CD (2011) Inhibition studies on enzymes involved in isoprenoid biosynthesis. Focus on two potential drug targets: DXR and IDI-2 enzymes. Curr EnzymInhib 7:79–95. https://doi.org/10.2174/157340811796575317

    Article  Google Scholar 

  67. Zhou C, Li Z, Wiberley-Bradford AE, Weise SE, Sharkey TD (2013) Isopentenyl diphosphate and dimethylallyl diphosphate/isopentenyl diphosphate ratio measured with recombinant isopentenyl diphosphate isomerase and isoprene synthase. Anal Biochem 440:130–136. https://doi.org/10.1016/j.ab.2013.05.028

    Article  CAS  PubMed  Google Scholar 

  68. Rad SA, Zahiri HS, Noghabi KA, Rajaei S, Heidari R, Mojallali L (2012) Type 2 IDI performs better than type 1 for improving lycopene production in metabolically engineered E. coli strains. World J Microb Biot 28:313–321. https://doi.org/10.1007/s11274-011-0821-4

    Article  CAS  Google Scholar 

  69. Lei HJ (2014) Study of the effects of nitrogen composition in high gravity wort on the assimilation of amino acids by lager yeast and fermentation control. South China University of Technology (Doctoral dissertation) (in Chinese)

  70. Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microb 74:2259–2266. https://doi.org/10.1128/AEM.02625-07

    Article  CAS  Google Scholar 

  71. Lilly M, Bauer FF, Styger G, Lambrechts MG, Pretorius IS (2006) The effect of increased branched-chain amino acid transaminase activity in yeast on the production of higher alcohols and on the flavour profiles of wine and distillates. FEMS Yeast Res 6:726–743. https://doi.org/10.1111/j.1567-1364.2006.00057.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2016YFD0400500), the Innovative Research Team of Tianjin Municipal Education Commission (TD13-5013), the Public Service Platform Project for Selection and Fermentation Technology of Industrial Microorganisms (17PTGCCX00190).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cuiying Zhang or Dongguang Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

This manuscript is in compliance with ethical standards. This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 41 KB)

Supplementary file2 (DOCX 853 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Li, H., Weng, Y. et al. Improve the production of d-limonene by regulating the mevalonate pathway of Saccharomyces cerevisiae during alcoholic beverage fermentation. J Ind Microbiol Biotechnol 47, 1083–1097 (2020). https://doi.org/10.1007/s10295-020-02329-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-020-02329-w

Keywords

Navigation