Skip to main content
Log in

Zinc Oxide Nanoparticles Synthesized by Bacillus cereus PMSS-1 Induces Oxidative Stress-Mediated Apoptosis via Modulating Apoptotic Proteins in Human Melanoma A375 Cells

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The microbial mediated synthesis of nanoparticles will be more effective for chemotherapeutic applications because microbes are well known attractive sources for the various biologically active biomolecules. The present study was designed to investigate the anticancer effect of zinc oxide nanoparticles (ZnO NPs) synthesized by Bacillus cereus PMSS-1 strain on human melanoma A375 cells. The synthesized ZnO NPs was characterized by UV-spectroscopy, X-ray diffraction (XRD) investigation, transmission electron microscope (TEM), energy dispersive X-ray (EDX), and Fourier transform infrared (FTIR) examination. The results show that the ZnO NPs exhibited concentration-dependent cytotoxicity on A375 cells, and induced the apoptosis as evidenced by the increased lipid peroxidation (LPO), diminished activities of an antioxidant such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Moreover, the administration of synthesized ZnO NPs increased reactive oxygen species (ROS) production and reduced mitochondrial membrane potential (MMP) in A375 cells. The western blot analyses explored that the anti-apoptotic protein Bcl-2 expression was significantly downregulated, whereas, the expression of pro-apoptotic proteins such as p53, Bax, Caspase-3 and Caspase-9 were significantly upregulated in ZnO NPs treated A375 cells. Therefore, the B. cereus synthesized ZnO NPs could be used for human malignant melanoma after proper in vivo studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. S. Goldberg, J. T. Doucette, H. W. Lim, J. Spencer, J. A. Carucci, and D. S. Rigel (2007). J. Am. Acad. Dermatol. 57, 60–66.

    Article  Google Scholar 

  2. T. Marugame and M. Z. Zhang (2010). J Clin. Oncol. 40, 710.

    Google Scholar 

  3. V. Stratigos, S. Nikolaou, C. Kedicoglou, I. Antoniou, G. Haidemenos. Stefanaki, and A. D. Katsambas (2007). J. Eur. Acad. Dermatol. Venereol. 21, 56–62.

    Article  CAS  Google Scholar 

  4. W. Sun and L. M. Schuchter (2001). Curr. Treat. Options Oncol. 2, 193–202.

    Article  CAS  Google Scholar 

  5. S. E. McNeil (2009). Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 264–271.

    Article  CAS  Google Scholar 

  6. J. Zhou, N. S. Xu, and Z. L. Wang (2006). Adv. Mater. Deerfield Beach Weinheim 18, 2432.

    Article  CAS  Google Scholar 

  7. C. Hanley, J. Layne, A. Punnoose, K. M. Reddy, I. Coombs, A. Coombs, et al. (2008). Nanotechnology 19, 295103.

    Article  Google Scholar 

  8. K. Huang, H. Ma, J. Liu, S. Huo, A. Kumar, T. Wei, et al. (2012). ACS Nano. 6, 4483–4493.

    Article  CAS  Google Scholar 

  9. J. W. Rasmussen, E. Martinez, P. Louka, and D. G. Wingett (2010). Expert. Opin. Drug. Deliv. 7, 106–377.

    Article  Google Scholar 

  10. R. M. Tripathi, A. S. Bhadwal, R. K. Gupta, P. Singh, A. Shrivastav, and B. R. Shrivastav (2014). J Photochem Photobiol B. https://doi.org/10.1016/j.jphotobiol.2014.10.001.

    Article  PubMed  Google Scholar 

  11. M. Saravanan, V. Gopinath, M. K. Chaurasia, A. Syed, F. Ameen, and N. Purushothaman (2018). Microb Pathog. https://doi.org/10.1016/j.micpath.2017.12.039.

    Article  PubMed  Google Scholar 

  12. H. Okhawa, N. Ohishi, and K. Yagi (1979). Anal. Biochem. 95, 351–358.

    Article  Google Scholar 

  13. Z. Y. P. Kakkar, B. Das, and P. N. Viswanathan (1984). Indian J. Biochem. Biophys. 21, 130–132.

    CAS  PubMed  Google Scholar 

  14. K. A. Sinha (1972). Anal. Biochem. 47, 389–394.

    Article  CAS  Google Scholar 

  15. M. S. Moron, J. W. De Pierre, and B. Mannervik (1972). Biochim. Biophys. Acta 82, 67–70.

    Google Scholar 

  16. C. P. Wang, E. Myung, and B. H. Lau (1993). J. Immunol. Methods 159, 131–138.

    Article  Google Scholar 

  17. L. V. Johnson, M. L. Walsh, and L. B. Chen (1980). Proc. Natl. Acad. Sci. USA 77, 990–994.

    Article  CAS  Google Scholar 

  18. M. Keuling, K. E. Felton, A. A. Parker, M. Akbari, S. E. Andrew, and V. A. Tron (2009). PLoS ONE 4, e6651.

    Article  Google Scholar 

  19. M. B. Atkins, M. T. Lotze, L. P. Dutcher, R. I. Fisher, G. Weiss, K. Margolin, J. Abrams, M. Sznol, D. Parkinson, M. Hawkins, et al. (1999). J. Clin. Oncol. 17, 2105–2116.

    Article  CAS  Google Scholar 

  20. D. Guo, C. Wu, H. Jiang, Q. Li, X. Wang, and B. Chen (2008). J. Photochem. Photobiol. B 93, 119–126.

    Article  CAS  Google Scholar 

  21. K. M. Reddy, F. Kevin, B. Jason, G. Denise, H. Cory, and P. Alex (2007). Appl. Phys. Lett. 90, 213902–213903.

    Article  Google Scholar 

  22. J. Santhoshkumar, S. Venkat Kumar, and S. Rajeshkumar (2017). Resource Efficient Technol. 3, 459–465.

    Article  Google Scholar 

  23. J. Bérdy (2005). J Antibiot. https://doi.org/10.1038/ja.2005.1.

    Article  Google Scholar 

  24. A. Hamdache, A. Lamarti, and I. G. Collado (2011). J. Nat. Prod. 74, 893–899.

    Article  CAS  Google Scholar 

  25. K. R. Meena, A. Sharma, and S. S. Kanwar (2017). Ann. Pharmacol. Pharm. 2, 1–5.

    Google Scholar 

  26. F. Baruzzi, L. Quintieri, M. Morea, and L. Caputo (2011). Commun. Curr. Res. Technol. Adv. 2, 1102–1111.

    Google Scholar 

  27. J. A. Trischman, P. R. Jensen, and W. Fenical (1994). Tetrahedron Lett. https://doi.org/10.1016/S0040-4039(00)77249-2.

    Article  Google Scholar 

  28. G. R. Pettit, J. C. Knight, D. L. Herald, R. K. Pettit, F. Hogan, J. R. V. Mukku, and J. Chapuis (2010). J Nat Prod. https://doi.org/10.1021/np800603u.Antineoplastic.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Y. Li, Y. Xu, L. Liu, Z. Han, P. Y. Lai, X. Guo, and P. Qian (2012). Mar Drugs. https://doi.org/10.3390/md10020319.

    Article  PubMed  PubMed Central  Google Scholar 

  30. M. L. V. Kumar, B. Thippeswamy, and P. V. Raj (2014). Appl Biochem Microbiol. https://doi.org/10.1134/S0003683814060088.

    Article  Google Scholar 

  31. H. U. Simon, A. Haj-Yehia, and F. Levi-Schaffer (2000). Apoptosis 5, 415–418.

    Article  CAS  Google Scholar 

  32. P. N. Shilpa, V. Sivaramakrishnan, and S. Niranjali Devaraj (2012). Asian Pac. J. Cancer. Prev. 13, 2753–2758.

    CAS  Google Scholar 

  33. S. Karthikeyan, S. L. Hoti, and N. R. Prasad (2015). Biomed. Pharmacother. 70, 274–282.

    Article  CAS  Google Scholar 

  34. E. A. Murphy, B. K. Majeti, L. A. Barnes, M. Makale, S. M. Weis, K. Lutu-Fuga, W. Wrasidlo, and D. A. Cheresh (2008). Proc. Natl. Acad. Sci. USA 105, 9343–9348.

    Article  CAS  Google Scholar 

  35. V. Sharma, D. Anderson, and A. Dhawan (2012). Apoptosis 17, 852–870.

    Article  CAS  Google Scholar 

  36. C. Y. Looi, B. Moharram, M. Paydar, et al. (2013). BMC Complement Altern. Med. 13, 166.

    Article  Google Scholar 

  37. M. Farnebo, V. J. Bykov, and K. G. Wiman (2010). Biochem. Biophys. Res. Commun. 396, 85–89.

    Article  CAS  Google Scholar 

  38. M. J. Akhtar, M. Ahamed, S. Kumar, M. M. Khan, J. Ahmad, and S. A. Alrokayan (2012). Int. J. Nanomed. 7, 845–857.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Yaazh Xenomic laboratories, Coimbatore for excellent technical and bioinformatics assistance.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

RP performed isolation and identification of bacterial strain, nanoparticle synthesis, and in vitro anticancer experiments, biochemical analyses and wrote the manuscript. RR performed the statistical data analyses. YK performed western blot analyses, software and data validation and edited manuscript. SD designed and supervised the study, and English corrected the manuscript.

Corresponding author

Correspondence to Sangeetha Dhayalan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parthasarathy, R., Ramachandran, R., Kamaraj, Y. et al. Zinc Oxide Nanoparticles Synthesized by Bacillus cereus PMSS-1 Induces Oxidative Stress-Mediated Apoptosis via Modulating Apoptotic Proteins in Human Melanoma A375 Cells. J Clust Sci 33, 17–28 (2022). https://doi.org/10.1007/s10876-020-01941-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01941-1

Keywords

Navigation