Skip to main content
Log in

Photovoltage generation by photosystem II core complexes immobilized onto a Millipore filter on an indium tin oxide electrode

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The light-induced functioning of photosynthetic pigment-protein complex of photosystem II (PSII) is linked to the vectorial translocation of charges across the membrane, which results in the formation of voltage. Direct measurement of the light-induced voltage (∆V) generated by spinach oxygen-evolving PSII core complexes adsorbed onto a Millipore membrane filter (MF) on an indium tin oxide (ITO) electrode under continuous illumination has been performed. PSII was shown to participate in electron transfer from water to the ITO electrode, resulting in ∆V generation. No photovoltage was detected in PSII deprived of the water-oxidizing complex. The maximal and stable photoelectric signal was observed in the presence of disaccharide trehalose and 2,6-dichloro-1,4-benzoquinone, acting as a redox mediator between the primary quinone acceptor QA of PSII and electrode surface. Long time preservation of the steady-state photoactivity at room temperature in a simple in design ITO|PSII-MF|ITO system may be related to the retention of water molecules attached to the PSII surface in the presence of trehalose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agostiano A, Ceglie A, Monica MD (1984) Water photoelectrolysis through the use of electrodes covered by photosystem-I and photosystem-II. Bioelectrochem Bioenerg 12:499–507

    CAS  Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    CAS  PubMed  Google Scholar 

  • Badura A, Kothe T, Schuhmann W, Rögner M (2011) Wiring photosynthetic enzymes to electrodes. Energy Environ Sci 4:3263–3274

    CAS  Google Scholar 

  • Brinkert K, Le Formal F, Li X, Durrant J, Rutherford AW, Fantuzzi A (2016) Photocurrents from photosystem II in a metal oxide hybrid system: Electron transfer pathways. Biochim Biophys Acta 1857:1497–1505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brzezinski P, Messinger A, Blatt Y, Gopher A, Kleinfield D (1998) Charge displacements in interfacial layers containing reaction centers. J Membr Biol 165:213–225

    CAS  PubMed  Google Scholar 

  • Cardona T, Sedoud A, Cox N, Rutherford AW (2012) Charge separation in photosystem II: comparative and evolutionary overview. Biochim Biophys Acta 1817:26–43

    CAS  PubMed  Google Scholar 

  • Cox N, Pantazis DA, Lubitz W (2020) Current understanding of the mechanism of water oxidation in photosystem II and its relation to XFEL data. Annu Rev Biochem 89:19.1–19.26

    Google Scholar 

  • Dau H, Haumann M (2007) Eight steps preceding O-O bond formation in oxygenic photosynthesis - a basic reaction cycle of the photosystem II manganese complex. Biochim Biophys Acta 1767:472–483

    CAS  PubMed  Google Scholar 

  • Drachev LA, Jasaitis AA, Kaulen AD, Kondrashin AA, Liberman EA, Nemecek IB, Ostroumov SA, Semenov AY, Skulachev VP (1974) Direct measurement of electric current generation by cytochrome oxidase, H -ATPase and bacteriorhodopsin. Nature 249:321–324

    CAS  PubMed  Google Scholar 

  • Drachev LA, Frolov VN, Kaulen AD, Kondrashin AA, Samuilov VD, Semenov AY, Skulachev VP (1976) Generation of electric current by chromatophores of Rhodospirillum rubrum and reconstitution of electrogenic function in subchromatophore pigment-protein complexes. Biochim Biophys Acta 440:637–660

    CAS  PubMed  Google Scholar 

  • Drachev LA, Kaulen AD, Semenov AY, Severina II, Skulachev VP (1979) Lipid-impegnated filters as a tool for studying the electric current-generating proteins. Anal Biochem 96:250–262

    CAS  PubMed  Google Scholar 

  • Fang X, Sokol KP, Heidary N, Kandiel TA, Zhang JZ, Reisner E (2019) Structure – activity relationships of hierarchical three-dimensional electrodes with photosystem II for semiartificial photosynthesis. Nano Lett 19:1844–1850

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira K, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    CAS  PubMed  Google Scholar 

  • Francia F, Palazzo G, Mallardi A, Cordone L, Venturoli G (2004) Probing light-induced conformational transitions in bacterial photosynthetic reaction centers embedded in trehalose-water amorphous matrices. Biochim Biophys Acta 1658:50–57

    CAS  PubMed  Google Scholar 

  • Francia F, Dezi M, Mallardi A, Palazzo G, Cordone L, Venturoli G (2008) Protein-matrix coupling/uncoupling in "dry" systems of photosynthetic reaction center embedded in trehalose/sucrose: the origin of trehalose peculiarity. J Am Chem Soc 130:10240–10246

    CAS  PubMed  Google Scholar 

  • Fu HY, Picot D, Choquet Y, Longatte G, Sayegh A, Delacotte J, Guille-Collignon M, Lemaýtre F, Rappaport F, Wollman FA (2017) Redesigning the QA binding site of photosystem II allows reduction of exogenous quinones. Nat Commun 8:1–12

    Google Scholar 

  • Gorka M, Cherepanov DA, Semenov AY, Golbeck JH (2020) Control of electrontransfer by protein dynamics in photosynthetic reaction centers. Crit Rev Biochem Mol Biol 55:425–468. https://doi.org/10.1080/10409238.2020.1810623

    Article  CAS  PubMed  Google Scholar 

  • Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Cyanobacterial photosystemII at 2.9-angstrom resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16:334–342

    CAS  PubMed  Google Scholar 

  • Haag E, Irrgang KD, Boekema EJ, Renger G (1990) Functional and structural analysis of photosystem II core complexes from spinach with high oxygen evolution capacity. Eur J Biochem 189:47–53

    CAS  PubMed  Google Scholar 

  • Haumann M, Mulkidjanian A, Junge W (1997) Electrogenicity of electron and proton transfer at the oxidizing side of photosystem II. Biochemistry 36:9304–9315

    CAS  PubMed  Google Scholar 

  • Hook F, Brzezinski P (1994) Light-induced voltage changes associated with electron and proton transfer in photosystem II core complexes reconstituted in phospholipid monolayers. Biophys J 66:2066–2072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ihssen J, Braun A, Faccio G, Gajda-Schrantz K, Thöny-Meyer L (2014) Light harvesting proteins for solar fuel generation in bioengineered photoelectrochemical cells. Curr Protein Pept Sci 15:374–384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda T, Senda M, Shiraishi T, Takahashi M, Asada K (1989) Electrocatalytic photolysis of water at photosystem II-modified carbon paste electrode containing dimethylbenzoquinone. Chem Lett 18:913–916

    Google Scholar 

  • Kato M, Cardona T, Rutherford AW, Reisner E (2012) Photoelectrochemical water oxidation with photosystem II integrated in a mesoporous indium-tin oxide electrode. J Am Chem Soc 134:8332–8335

    CAS  PubMed  Google Scholar 

  • Kato M, Cardona T, Rutherford AW, Reisner E (2013) Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation. J Am Chem Soc 135:10610–10613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kato M, Zhang JZ, Paul N, Reisner E (2014) Protein film photoelectrochemistry of the water oxidation enzyme photosystem II. Chem Soc Rev 43:6485–6497

    CAS  PubMed  Google Scholar 

  • Kornienko N, Zhang JZ, Sokol KP, Lamaison S, Fantuzzi A, van Grondelle R, Rutherford AW, Reisner E (2018) Oxygenic photoreactivity in photosystem II studied by rotating ring disk electrochemistry. J Am Chem Soc 140:17923–17931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kothe T, Plumeré N, Badura A, Nowaczyk MM, Guschin DA, Rögner M, Schuhmann W (2013) Combination of a photosystem 1-based photocathode and a photosystem 2-based photoanode to a z-scheme mimic for biophotovoltaic applications. Angew Int Ed Chem 52:14233–14236

    CAS  Google Scholar 

  • Lai Y-H, Kato M, Mersch D, Reisner E (2014) Comparison of photoelectrochemical water oxidation activity of a synthetic photocatalyst system with photosystem II. Faraday Discuss 176:199–211

    CAS  PubMed  Google Scholar 

  • Larom S, Salama F, Schuster G, Adir N (2010) Engineering of an alternative electron transfer path in photosystem II. Proc Natl Acad USA 107:9650–9655

    CAS  Google Scholar 

  • Larom S, Kallmann D, Saper G, Pinhassi R, Rothschild A, Dotan H, Ankonina G, Schuster G, Adir N (2015) The photosystem II D1-K238E mutation enhances electrical current production using cyanobacterial thylakoid membranes in a bio-photoelectrochemical cell. Photosynth Res 126:161–169

    CAS  PubMed  Google Scholar 

  • Lemieux S, Carpentier R (1988) Properties of a photosystem II preparation in a photoelectrochemical cell. J Photochem Photobiol B 2:221–231

    CAS  Google Scholar 

  • Li Z, Wang W, Ding C, Wang Z, Liao S, Li C (2017) Biomimetic electron transport via multiredox shuttles from photosystem II to a photoelectrochemical cell for solar water splitting. Energy Environ Sci 10:765–771

    CAS  Google Scholar 

  • Longatte G, Fu H-Y, Buriez O, Labbé E, Wollman FA, Amatore C, Rappaport F, Guille-Collignon M, Lemaîtrea F (2015) Evaluation of photosynthetic electrons derivation by exogenous redox mediators. Biophys Chem 205:1–8

    CAS  PubMed  Google Scholar 

  • Lyu H, Lazár D (2017) Modeling the light-induced electric potential difference ΔΨ across the thylakoid membrane based on the transition state rate theory. Biochim Biophys Acta 1858:239–248

    CAS  Google Scholar 

  • Malferrari M, Savitsky A, Mamedov MD, Milanovsky GE, Lubitz W, Möbius K, Semenov AY, Venturoli G (2016) Trehalose matrix effects on charge-recombination kinetics in photosystem I of oxygenic photosynthesis at different dehydration levels. Biochim Biophys Acta 1857:1440–1454

    CAS  PubMed  Google Scholar 

  • Mamedov MD, Beshta OE, Samuilov VD, Semenov AY (1994) Electrogenicity at the secondary quinone acceptor site of cyanobacterial photosystem II. FEBS Lett 350:96–98

    CAS  PubMed  Google Scholar 

  • Mamedov MD, Gadzhieva RM, Gourovskaya KN, Drachev LA, Semenov AY (1996) Electrogenicity at the donor/acceptor sides of cyanobacterial photosystem I. J Bioenerg Biomembr 28:519–524

    Google Scholar 

  • Mamedov MD, Kurashov VN, Cherepanov DA, Semenov AY (2010) Photosystem II: where does the light-induced voltage come from? Front. Biosci 15:1007–1017

    CAS  Google Scholar 

  • Mamedov MD, Petrova IO, Yanykin DV, Zaspa AA, Semenov AY (2015) Effect of trehalose on oxygen evolution and electron transfer in photosystem 2 complexes. Biochem Mosc 80:61–66

    CAS  Google Scholar 

  • Mamedov M, Francia F, Vitukhnovskaya L, Semenov A, Venturoli G (2019) Trehalose matrix effects on charge-transfer reactions in photosystem II at different dehydration levels. In 10th international conference “photosynthesis and hydrogen energy research for sustainability”, St. Petersburg, Abstract, p 75

  • Mersch D, Lee C-Y, Zhang JZ, Brinkert K, Fontecilla-Camps JC, Rutherford AW, Reisner E (2015) Wiring of photosystem II to hydrogenase for photoelectrochemical water splitting. J Am Chem Soc 137:8541–8549

    CAS  PubMed  Google Scholar 

  • Möbius K, Savitsky A, Malferrari M, Francia F, Mamedov M, Semenov A, Lubitz W, Venturoli G (2020) Soft dynamic confinement of membrane proteins by dehydrated Trehalose matrices: high-field EPR and fast-laser studies. Appl Magn Reson https://doi.org/10.1007/s00723-020-01240-y, 2020

  • Müh F, Glöckner C, Hellmich J, Zouni A (2012) Light-induced quinone reduction in photosystem II. Biochim Biophys Acta 1817:44–65

    PubMed  Google Scholar 

  • Musazade E, Voloshin R, Brady N, Mondal J, Atashova S, Zharmukhamedov SK, Huseynova I, Ramakrishna S, Najafpour MM, Shen JR, Bruce BD, Allakhverdiev SI (2018) Biohybrid solar cells: fundamentals, progress, and challenges. J Photochem Photobiol C: Photochem Rev 35:134–156

    CAS  Google Scholar 

  • Najafpour MM, Renger G, Hołyńska M, Moghaddam AN, Aro EM, Carpentier R, Nishihara H, Eaton-Rye JJ, Shen JR, Allakhverdiev SI (2016) Manganese compounds as wateroxidizing catalysts: from the natural water-oxidizing complex to nanosized manganese oxide structures. Chem Rev 116:2886–2936

    CAS  PubMed  Google Scholar 

  • Olsson C, Jansson H, Swenson J (2016) The role of trehalose for the stabilization of proteins. J Phys Chem B 120:4723–4731

    CAS  Google Scholar 

  • Pinhassi RI, Kallmann D, Saper G, Larom S, Linkov A, Boulouis A, Schöttler MA, Bock R, Rothschild A, Adir N, Schuster G (2015) Photosynthetic membranes of Synechocystis orplants convert sunlight to photocurrent through different pathways due to different architectures. PLoS One 10:1–17

    Google Scholar 

  • Plumeré N, Nowaczyk MM (2016) Biophotoelectrochemistry of photosynthetic proteins. Adv Biochem Eng Biotechnol 158:111–136

    PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    CAS  Google Scholar 

  • Pospíšil P (2016) Production of reactive oxygen species by photosystem II as a response to light and temperature stress. Front Plant Sci 7:1950

    PubMed  PubMed Central  Google Scholar 

  • Rao KK, Hall DO, Vlachopoulos N, Grätzel M, Evans MCW, Seibert M (1990) Photoelectrochemical responses of photosystem II particles immobilized on dye derivatized TiO2 films. J Photochem Photobiol B 5:379–389

    CAS  Google Scholar 

  • Rappaport F, Diner BA (2008) Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in photosystem II. Coord Chem Rev 252:259–272

    CAS  Google Scholar 

  • Ravi SK, Tan SC (2015) Progress and perspectives in exploiting photosynthetic biomolecules for solar energy harnessing. Energy Environ Sci 8:2551–2573

    CAS  Google Scholar 

  • Renger G (1986) Herbicide interaction with photosystem 2. Recent development. Physiol Veg 24:509–521

    CAS  Google Scholar 

  • Rouillon R, Piletsky SA, Piletska EV, Euzet P, Carpentier R (2006) Comparison of the immobilization techniques for photosystem II. In: Biotechnological applications of photosynthetic proteins: Biochips, biosensors and biodevices. Biotechnology intelligence unit. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36672-2_7

  • Roxby DN, Yuan Z, Krishnamoorthy S, Wu P, Tu WC, Chang GE, Lau R, Chen YC (2020) Enhanced biophotocurrent generation in living photosynthetic optical resonator. Adv Sci 7:1903707

    CAS  Google Scholar 

  • Saboe PO, Conte E, Farell M, Bazan GC, Kumar M (2017) Biomimetic and bioinspired approaches for wiring enzymes to electrode interfaces. Energy Environ Sci 10:14–42

    CAS  Google Scholar 

  • Saper G, Kallman D, Conzuelo F et al (2018) Live cyanobacteria produce photocurrent and hydrogen using both the respiratory and photosynthetic systems. Nat Commun 9:2168

    PubMed  PubMed Central  Google Scholar 

  • Satoh K, Oh-hashi M, Kashino Y, Koike H (1995) Mechanism of electron flow through the QB site in photosystem II. 1. Kinetics of the reduction of electron acceptors at the QB and plastoquinone sites in photosystem II particles from the cyanobacterium Synechococcus vulcanus. Plant Cell Physiol 36:597–605

    CAS  Google Scholar 

  • Semenov AY, Cherepanov DA, Mamedov MD (2008) Electrogenic reactions and dielectric properties of photosystem II. Photosynth res 98:121–130 Shen J-R (2015) the structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu Rev Plant Biol 66:23–48

    Google Scholar 

  • Semin BK, Seibert M (2009) A simple calorimetric determination of the manganese content in photosynthetic membranes. Photosynth Res 100:45–48

    CAS  PubMed  Google Scholar 

  • Shen J-R (2015) The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu Rev Plant Biol 66:23–48

    CAS  PubMed  Google Scholar 

  • Shevela D, Messinger J (2012) Probing the turnover efficiency of photosystem II membrane fragments with different electron acceptors. Biochim Biophys Acta 1817:1208–1212

    CAS  PubMed  Google Scholar 

  • Shevela D, Ananyev G, Vatland AK, Arnold J, Mamedov F, Eichacker LA, Dismukes GC, Messinger J (2019) ‘Birth defects’ of photosystem II make it highly susceptible to photodamage during chloroplast biogenesis. J Physiol Plant 166:165–180

    CAS  Google Scholar 

  • Shinkarev VP, Wraight CA (1993) Oxygen evolution in photosynthesis: from unicycle to bicycle. Proc Natl Acad Sci U S A 90:1834–1838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sigfridsson K, Hansson O, Brzezinski P (1995) Electrogenic light reactions in photosystem I: resolution of electron-transfer rates between the iron-sulfur centers. Proc Natl Acad Sci U S A 92:3458–3462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnova IA, Konstantinov AA, Skulachev VP (1981) Role of cofactors in membrane potential generation by Rhodospirillum rubrum chromatophores incorporated in a teflon filter. Biokhimiia 46:1155–1166

    CAS  PubMed  Google Scholar 

  • Sokol KP, Robinson WE, Warnan J, Kornienko N, Nowaczyk MM, Ruff A, Zhang JZ, Reisner E (2018) Bias-free photoelectrochemical water splitting with photosystem II on a dyesensitized photoanode wired to hydrogenase. Nat Energy 3:944–951

    CAS  Google Scholar 

  • Suga M, Akita F, Hirata K, Ueno G, Murakami H, Nakajima Y, Shimizu T, Yamashita K, Yamamoto M, Ago H, Shen J-R (2015) Native structure of photosystem II at 1.95 a resolution viewed by femtosecond X-ray pulses. Nature 517:99–103

    CAS  PubMed  Google Scholar 

  • Teodor AH, Barry DB (2020) Putting photosystem I to work: truly green energy. Trends Biotechnol https://doi.org/10.1016/j.tibtech.2020.04.004

  • Terasaki N, Iwai M, Yamamoto N, Hiraga T, Yamada S, Inoue Y (2008) Photocurrent generation properties of Histag-photosystem II immobilized on nanostructured gold electrode. Thin Solid Films 516:2553–2557

    CAS  Google Scholar 

  • Trebst A (1980) Inhibitors in electron flow: tools for the functional and structural localization of carriers and energy conservation sites. Methods Enzymol 69:675–715

    CAS  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–65

    CAS  PubMed  Google Scholar 

  • Vinyard DJ, Brudvig GW (2017) Progress toward a molecular mechanism of water oxidation in photosystem II. Annu Rev Phys Chem 68:101–116

    CAS  PubMed  Google Scholar 

  • Vittadello M, Gorbunov MY, Mastrogiovanni DT, Wielunski LS, Garfunkel EL, Guerrero F, Kirilovsky D, Sugiura M, Rutherford AW, Safari A, Falkowski PG (2010) Photoelectron generation by photosystem II core complexes tethered to gold surfaces. ChemSusChem 3:471–475

    CAS  PubMed  Google Scholar 

  • Wang W, Chen J, Li C, Tian W (2014) Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts. Nat Commun 5:1–8

    Google Scholar 

  • Wei X, Su X, Cao P, Liu X, Chang W, Li M, Zhang X, Liu Z (2016) Structure of spinach photosystem II-LHCII supercomplex at 3.2 Å resolution. Nature 534:69–74

    CAS  PubMed  Google Scholar 

  • Yano J, Kern J, Sauer K, Latimer MJ, Pushkar Y, Biesiadka J, Loll B, Saenger W, Messinger J, Zouni A, Yachandra VK (2016) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314:821–825

    Google Scholar 

  • Yanykin DV, Khorobrykh AA, Mamedov MD, Klimov VV (2015) Trehalose stimulation of photoinduced electron transfer and oxygen photoconsumption in Mn-depleted photosystem 2 membrane fragments. J Photochem Photobiol B 152(Pt B):279–285

    CAS  PubMed  Google Scholar 

  • Yanykin DV, Khorobrykh AA, Mamedov MD, Klimov VV (2016) Trehalose protects Mn-depleted photosystem 2 preparations against the donor-side photoinhibition. J Photochem Photobiol B 164:236–243

    CAS  PubMed  Google Scholar 

  • Yao DCI, Brune DC, Vermaas WFJ (2012) Lifetimes of photosystem I and II proteins in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 586:169–173

    CAS  PubMed  Google Scholar 

  • Yates NDJ, Fascione MA, Parkin A (2018) Methodologies for “wiring” redox proteins/enzymes to electrode surfaces. Chem Eur J 24:12164–12182

    CAS  PubMed  Google Scholar 

  • Yehezkeli O, Tel-Vered R, Wasserman J, Trifonov A, Michaeli D, Nechushtai R, Willner I (2012) Integrated photosystem II-based photo-bioelectrochemical cells. Nat Commun 3:1–7

    Google Scholar 

  • Zaharieva I, Dau H (2019) Energetics and kinetics of S-state transitions monitored by delayed chlorophyll fluorescence. Front Plant Sci 10:386

    PubMed  PubMed Central  Google Scholar 

  • Zhang JZ, Reisner E (2020) Advancing photosystem II photoelectrochemistry for semi-artificial photosynthesis. Nature Rev Chem 4:6–21

    CAS  Google Scholar 

  • Zhang Y, Magdaong NM, Shen M, Frank HA, Rusling JF (2015) Efficient photoelectrochemical energy conversion using spinach photosystem II (PSII) in lipid multilayer films. ChemistryOpen 4:111–114

    CAS  PubMed  Google Scholar 

  • Zimmermann K, Heck M, Frank J, Kern J, Vass I, Zouni A (2006) Herbicide binding and thermal stability of photosystem II isolated from Thermosynechococcus elongates. Biochim Biophys Acta 1757:106–114

    CAS  PubMed  Google Scholar 

  • Efrati A, Tel-Vered R, Michaeli D, Nechushtai R, Willner I (2013) Cytochrome c-coupled photosystem I and photosystem II (PSI/PSII) photobioelectrochemical cells. Energy Environ Sci 6:2950–2956

    CAS  Google Scholar 

  • Rickert KW, Sears J, Beck WF, Brudvig GW (1991) Mechanism of irreversible inhibition of oxygen evolution in photosystem II by tris (hydroxymethyl) aminomethane. Biochemistry 30:7888–7894

    CAS  PubMed  Google Scholar 

  • Mamedov M, Vitukhnovskaya L, Milanovsky G, Semenov A (2020) Generation of voltage transients by photosystem II complexes in the presence of externally added cytochrome c. Photosynth Res (in press)

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research grant № 17-00-00201 (complex project № 17-00-00218(K)) and FRCCP RAS state task (АААА-А19-119012990175- 9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahir D. Mamedov.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaspa, A.A., Vitukhnovskaya, L.A., Mamedova, A.M. et al. Photovoltage generation by photosystem II core complexes immobilized onto a Millipore filter on an indium tin oxide electrode. J Bioenerg Biomembr 52, 495–504 (2020). https://doi.org/10.1007/s10863-020-09857-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-020-09857-1

Keywords

Navigation