Skip to main content
Log in

Cauchy Problem for the Equation of Torsional Vibrations of a Rod in a Viscoelastic Medium

  • PARTIAL DIFFERENTIAL EQUATIONS
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

We study the Cauchy problem in the space of continuous functions for a nonlinear Sobolev type differential equation generalizing the equation of torsional vibrations of an infinite rod in a viscoelastic medium. Conditions for the existence of a global solution and for the blow-up of the solution of the Cauchy problem in finite time are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Equation (1) is also a strictly pseudohyperbolic equation: the symbol of the principal part of the differential operator \(L(\partial _x,\partial _t) \) is homogeneous with respect to the vector \( ({1}/{4},{1}/{4})\), the auxiliary algebraic equation \({\eta }^2+\alpha \xi \eta -{\xi }^2=0\) has only real distinct roots with respect to \(\eta \), and the explicit form of the symbols of minor terms implies estimates for their moduli by the majorant \(c(1+{\xi }^2) \), \(c=\mathrm {const}\thinspace \), see [1, Ch. 2, Sec. 2].

  2. In the space \(C[\mathbb {R}^1]\) [9, Ch. VIII, Sec. 1 of the Russian translation; 10, Sec. 2], the operator \(\partial _x \) with the domain \(D(\partial _x)=C^{(1)}[\mathbb {R}^1]\) generates a \(C_0 \)-group of left translations, \(U(t;\partial _x)g(x)=g(x+t) \), while the operator \(\partial ^2_x \) with the domain \(D(\partial ^2_x)=C^{(2)}[\mathbb {R}^1]\) is the generator of the \(C_0 \)-semigroup

    $$ U\left (t;\partial ^2_x\right )g(x)=\left (2\sqrt {\pi t}\right )^{-1}\int ^{+\infty }_{-\infty }{e^{-{{\xi }^2}/{(4t)}}g(x+\xi )\thinspace d\xi },\quad t\ge 0. $$

REFERENCES

  1. Demidenko, G.V. and Uspenskii, S.V., Uravneniya i sistemy, ne razreshennye otnositel’no starshei proizvodnoi (Equations and Systems Unresolved for the Highest Derivative), Novosibirsk: Nauchn. Kniga, 1998.

    Google Scholar 

  2. Sveshnikov, A.G., Al’shin, A.B., Korpusov, M.O., and Pletner, Yu.D., Lineinye i nelineinye uravneniya sobolevskogo tipa (Linear and Nonlinear Sobolev Type Equations), Moscow: Fizmatlit, 2007.

    Google Scholar 

  3. Erofeev, V.I., Kazhaev, V.V., and Semerikova, N.P., Volny v sterzhnyakh. Dispersiya. Dissipatsiya. Nelineinost’ (Waves in Rods. Dispersion. Dissipation. Nonlinearity), Moscow: Fizmatlit, 2002.

    Google Scholar 

  4. Vibratsii v tekhnike: Spravochnik. V 6-ti t. (Vibrations in Engineering. A Handbook in 6 Vols.), Vol. 1: Kolebaniya lineinykh sistem (Vibrations of Linear Systems), Bolotin, V.V., Ed., Moscow: Mashinostroenie, 1978.

  5. Fedotov, I. and Volevich, L.R., The Cauchy problem for hyperbolic equations not resolved with respect to the highest time derivative, Russ. J. Math. Phys., 2006, vol. 13, no. 3, pp. 278–292.

    Article  MathSciNet  Google Scholar 

  6. Demidenko, G.V., Solvability conditions of the Cauchy problem for pseudohyperbolic equations, Sib. Math. J., 2015, vol. 56, no. 6, pp. 1028–1041.

    Article  MathSciNet  Google Scholar 

  7. Samsonov, A.M., Strain Solitons in Solids and How to Construct Them, London–New York: Chapman and Hall/CRC Press, 2001.

    Book  Google Scholar 

  8. Wang, S. and Chen, G., Cauchy problem of the generalized double dispersion equation, Nonlinear Anal., 2006, no. 64, pp. 159–173.

  9. Dunford, N. and Schwartz, J.T., Linear Operators. Part 1: General Theory, London–New York: Interscience Publ., 1958. Translated under the title: Lineinye operatory. Obshchaya teoriya, Moscow: Izd. Inostr. Lit., 1962.

    MATH  Google Scholar 

  10. Vasil’ev, V.V., Krein, S.G., and Piskarev, S.I., Semigroups of operators, cosine operator functions, and linear differential equations, J. Sov. Math., 1991, vol. 54, no. 4, pp. 1042–1129.

    Article  Google Scholar 

  11. Prudnikov, A.P., Brychkov, Yu.A., and Marichev, O.I., Integraly i ryady. Dopolnitel’nye glavy (Integrals and Series. Additional Chapters), Moscow: Nauka, 1986.

    MATH  Google Scholar 

  12. Dannan, F.M., Integral inequalities of Gronwall–Bellman–Bihari type and asymptotic behavior of certain second order nonlinear differential equations, J. Math. Anal. Appl., 1985, vol. 108, no. 1, pp. 151–164.

    Article  MathSciNet  Google Scholar 

  13. Travis, C.C. and Webb, G.F., Cosine families and abstract nonlinear second order differential equations, Acta Math. Acad. Sci. Hung., 1978, vol. 32, pp. 75–96.

    Article  MathSciNet  Google Scholar 

  14. Dragomir, S.S., Some Gronwall Type Inequalities and Applications, Melbourne: Victoria Univ. Technol., 2002.

    Google Scholar 

  15. Benjamin, T.B., Bona, J.L., and Mahony, J.J., Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. London, 1972, vol. 272, pp. 47–78.

    Article  MathSciNet  Google Scholar 

  16. Korpusov, M.O., Sveshnikov, A.G., and Yushkov, E.V., Metody teorii razrusheniya reshenii nelineinykh uravnenii matematicheskoi fiziki (Methods of the Blow-Up Theory for Solutions of Nonlinear Equations of Mathematical Physics), Moscow: Mosk. Gos.Univ., 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. G. Umarov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umarov, K.G. Cauchy Problem for the Equation of Torsional Vibrations of a Rod in a Viscoelastic Medium. Diff Equat 56, 1345–1362 (2020). https://doi.org/10.1134/S00122661200100110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S00122661200100110

Navigation