Skip to main content
Log in

Comparison of Magnetic and Plasma Overshoots of Interplanetary Shocks

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract—

The structure of interplanetary shock fronts was studied based on the data from the BMSW plasma spectrometer, installed on the SPEKTR-R spacecraft, supplemented by magnetic field measurements on the WIND spacecraft. Special attention was paid to periodic growths (overshoots) in the value of the ion flux or magnetic field relative to their mean values outside the ramp. A comparison was performed with the overshoot in the magnetic field, with the Mach number, and with the β parameter. Based on an analysis of 18 intersections of interplanetary shock fronts, in which the overshoots in the ion flux and magnetic field value were observed, it was shown that the value of the magnetic field overshoot is, on the average, less than a similar value in the solar wind’s ion flux, which is associated with different time resolution of measurements. The ion flux overshoot value is found to grow with the growth of the Mach number, in the same way, as the value of the magnetic field overshoot. It is shown that overshoots are formed not only in the supercritical shocks, but also in those with Mach numbers that are less than the value of the first critical Mach number. It is also found that the estimates of the wavelength of the ion flux and magnetic field oscillations behind the ramp well correlate with the value of a gyroradius of captured ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Sagdeev, R.Z., Collective processes and shock waves in low-density plasma, Voprosy teorii plazmy (Problems in Plasma Theory), Leontovich, M.A., Ed., Moscow: Atomizdat, 1964, vol. 4, pp. 20–80.

    Google Scholar 

  2. Galeev, A.A. and Sagdeev, R.Z., Lecture on the nonlinear theory of plasma, Trieste, Italy, 1966, p. 38.

    MATH  Google Scholar 

  3. Tidman, D.A., Turbulent shock waves in plasma, Phys. Fluids, 1967, vol. 10, pp. 547–568.

    Article  ADS  Google Scholar 

  4. Formisano, V., Collisionless shock waves in space and astrophysical plasmas, in Workshop on Future Missions in Solar, Heliospheric and Space Plasma Physics, Proc. ESA Workshop, Noordwijk, The Netherlands: ESA Scientific and Technical Publications Branch, 1985, p. 83.

  5. Kennel, C.F., Edmiston, J.P., and Hada, T., A quarter century of collisionless shock research, in Collisionless Shocks in the Heliosphere: A Tutorial Review, Stone, R.G. and Tsurutani, B.T., Eds., Washington, D.C.: Am. Geophys. Union, 1985, vol. 34, pp. 1–36.

    Google Scholar 

  6. Mellott, M.M. and Greenstadt, E.W., The structure of oblique subcritical bow shocks ISEE-1 and 2 observations, J. Geophys. Res., 1984, vol. 89, no. A4, pp. 2151–2161.

    Article  ADS  Google Scholar 

  7. Lembège, B., Giacalone, J., Scholer, M., et al., Selected problems collisionless shock physics, Space Sci. Rev., 2004, vol. 110, pp. 161–226.

    Article  ADS  Google Scholar 

  8. Bale, S.D., Balikhin, M.A., Horbury, T.S., et al., Quasi-perpendicular shock structure and processes, Space Sci. Rev., 2005, vol. 118, pp. 161–203.

    Article  ADS  Google Scholar 

  9. Krasnoselskikh, V., Balikhin, M., Walker, S.N., et al., The dynamic quasiperpendicular shock: Cluster discoveries, Space Sci. Rev., 2013, vol. 178, nos. 2–4, pp. 535–598.

    Article  ADS  Google Scholar 

  10. Borodkova, N.L., Eselevich, V.G., Zastenker, G.N., et al., Fine structure of interplanetary shock front: Results from BMSW experiment with high time resolution, J. Geophys. Res., 2019, vol. 124. https://doi.org/10.1029/2018JA026255

  11. Farris, M.H., Russell, C.T., and Thomsen, M.F., Magnetic structure of the low beta, quasi-perpendicular shock, J. Geophys. Res., 1993, vol. 98, pp. 15285–15 294.

    Article  ADS  Google Scholar 

  12. Wilson, L.B. III, Koval, A., Szabo, A., et al., Revisiting the structure of low-Mach number, low-beta, quasi-perpendicular shocks, J. Geophys. Res., 2017, vol. 122, no. 9, pp. 9115–9133.

    Article  Google Scholar 

  13. Ramírez Vélez, J.C., Blanco-Cano, X., Aguilar-Rodriguez, E., et al., Whistler waves associated with weak interplanetary shocks, J. Geophys. Res., 2012, vol. 117, A11103. https://doi.org/10.1029/2012JA017573

    Article  ADS  Google Scholar 

  14. Thomsen, M.F., Gosling, J.T., Bame, S.J., et al., Ion and electron heating at collisionless shocks near the critical Mach number, J. Geophys. Res., 1985, vol. 90, pp. 137–148.

    Article  ADS  Google Scholar 

  15. Gedalin, M., Ion dynamics and distribution at the quasiperpendicular collisionless shock front, Surv. Geophys., 1997, vol. 18, pp. 541–566.

    Article  ADS  Google Scholar 

  16. Hobara, Y., Balikhin, M., Krasnoselskikh, V., et al., Statistical study of the quasi-perpendicular shock ramp widths, J. Geophys. Res., 2010, vol. 115, A11106. https://doi.org/10.1029/2010JA015659

    Article  ADS  Google Scholar 

  17. Mazelle, C., Lembège, B., Morgenthaler, A., et al., Self-reformation of the quasi-perpendicular shock: Cluster observations, AIP Conf. Proc., 2010, pp. 471–474.

  18. Němeček, Z., Šafránková, J., Goncharov, O., et al., Ion scales of quasi-perpendicular low-Mach-number interplanetary shocks, Geophys. Res. Lett., 2013, vol. 40, pp. 4133–4137.

    Article  ADS  Google Scholar 

  19. Sapunova, O.V., Borodkova, N.L., Zastenker, G.N., et al., Fine structure of interplanetary shock fronts from the data of the BMSW instrument of the PLASMA-F experiment, Cosmic Res., 2017, vol. 55, no. 6, pp. 396–402.

    Article  ADS  Google Scholar 

  20. Heppner, J.P., Sugiura, M., Skillman, T.L., et al., OGO-A magnetic field observations, J. Geophys. Res., 1967, vol. 72, no. 11, pp. 5417–5471.

    Article  ADS  Google Scholar 

  21. Russell, C.T. and Greenstadt, E.W., Initial ISEE magnetometer results—Shock observation, Space Sci. Rev., 1979, vol. 23, pp. 3–37.

    Article  ADS  Google Scholar 

  22. Leroy, M.M., Goodrich, C.C., Winske, D., et al., The structure of perpendicular bow shocks, J. Geophys. Res., 1982, vol. 87, pp. 5081–5094.

    Article  ADS  Google Scholar 

  23. Livesey, W.A., Kennel, C.F., and Russell, C.T., ISEE-1 and -2 observations of magnetic field strength overshoots in quasi-perpendicular bow shocks, Geophys. Res. Lett., 1982, vol. 9, pp. 1037–1040.

    Article  ADS  Google Scholar 

  24. Sckopke, N., Paschmann, G., Bame, S.J., et al., Evolution of ion distributions across the nearly perpendicular bow shock-specularly and non-specularly reflected-gyrating ions, J. Geophys. Res., 1983, vol. 88, pp. 6121–6136.

    Article  ADS  Google Scholar 

  25. Russell, C.T., Hoppe, M.M., and Livesey, W.A., Overshoots in planetary bow shocks, Nature, 1982, vol. 296, pp. 45–48.

    Article  ADS  Google Scholar 

  26. Edmiston, J.P. and Kennel, C.F., A parametric survey of the first critical Mach number for a fast MHD shock, J. Plasma Phys., 1984, vol. 32, no. 3, pp. 429–441.

    Article  ADS  Google Scholar 

  27. Mellott, M.M. and Livesey, W.A., Shock overshoots revisited, J. Geophys. Res., 1987, vol. 92, pp. 13661–13665.

    Article  ADS  Google Scholar 

  28. Tatrallyay, M., Gevai, G., Apathy, I., et al., Magnetic field overshoots in the Martian bow shock, J. Geophys. Res., 1997, vol. 102, pp. 2157–2163.

    Article  ADS  Google Scholar 

  29. Saxena, R., Bale, S., and Horbury, T.S., Wavelength and decay length of density overshoot structure in supercritical, collisionless bow shocks, Phys. Plasmas, 2005, vol. 12, id 052904. https://doi.org/10.1063/1.1900093

  30. Balikhin, M.A., Nozdrachev, M., Dunlop, M., et al., Observation of the terrestrial bow shock in quasi-electrostatic subshock regime, J. Geophys. Res., 2002, vol. 107, pp. 1155–1163.

    Article  Google Scholar 

  31. Newbury, J.A., Russell, C.T., and Gedalin, M., The ramp width of high-Mach-number, quasi-perpendicular collisionless shock, J. Geophys. Res., 1998, vol. 103, pp. 29581–29593.

    Article  ADS  Google Scholar 

  32. Kajdič, P., Preisser, L., Blanco-Cano, X., et al., First observations of irregular surface of interplanetary shocks at ion scales by cluster, Astrophys. J. Lett., 2019, vol. 874, id L13.

  33. Dimmock, A.P., Russell, C.T., Sagdeev, R.Z., et al., Direct evidence of nonstationary collisionless shocks in space plasmas, Sci. Adv., 2019, vol. 5, no. 2, eaau9926. https://doi.org/10.1126/sciadv.aau9926

  34. Šafránková, J., Němeček, Z., Přech, L., et al., Fast solar wind monitor (BMSW): Description and first results, Space Sci. Rev., 2013, vol. 175, pp. 165–182.

    Article  ADS  Google Scholar 

  35. Zastenker, G.N., Šafránková, J., Němeček, Z., et al., Fast measurements of parameters of the solar wind using the BMSW instrument, Cosmic Res., 2013, vol. 51, no. 2, pp. 78–89.

    Article  ADS  Google Scholar 

  36. Lepping, R.P., Acuña, M.H., Burlaga, L.F., et al., The wind magnetic field investigation, Space Sci. Rev., 1995, vol. 71, pp. 207–229.

    Article  ADS  Google Scholar 

  37. Weygand, J.M., Matthaeus, W.H., Kivelson, M.G., et al., Magnetic correlation functions in the slow and fast solar wind in the Eulerian reference frame, J. Geophys. Res., 2013, vol. 118, pp. 3995–4004.

    Article  Google Scholar 

  38. Matthaeus, W.H., Weygand, J.M., and Dasso, S., Ensemble space–time correlation of plasma turbulence in the solar wind, Phys. Rev. Lett., 2016, vol. 116, 245101. https://doi.org/10.1103/PhysRevLett.116.245101

    Article  ADS  Google Scholar 

  39. Eselevich, M.V. and Eselevich, V.G., Fractal structure of the heliospheric plasma sheet in the Earth’s orbit, Geomagn. Aeron. (Engl. Transl.), 2005, vol. 45, no. 3, pp. 326–336.

  40. Balikhin, M.A., Zhang, T.L., Gedalin, M., et al., Venus express observes a new type of shock with pure kinematic relaxation, Geophys. Res. Lett., 2008, vol. 35 L01103. https://doi.org/10.1029/2007GL032495

    Article  ADS  Google Scholar 

  41. Omidi, N., Blanco-Cano, X., and Russell, C.T., Macrostructure of collisionless bow shocks: 1. Scale lengths, J. Geophys. Res., 2005, vol. 110, A12212. https://doi.org/10.1029/2005JA011169

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to the NASA CDAWEB for the possibility of using the data on plasma and magnetic field parameters measured on the WIND and Cluster satellites.

Funding

This work was supported by the Russian Science Foundation, grant no. 16-12-10062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Borodkova.

Additional information

Translated by Yu. Preobrazhensky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodkova, N.L., Sapunova, O.V., Eselevich, V.G. et al. Comparison of Magnetic and Plasma Overshoots of Interplanetary Shocks. Cosmic Res 58, 450–459 (2020). https://doi.org/10.1134/S0010952520060015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952520060015

Navigation