Skip to main content

Advertisement

Log in

Enhanced Gas Separation Performance by Embedding Submicron Poly(ethylene glycol) Capsules into Polyetherimide Membrane

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Recently, hollow filler as an emerging concept is attracting more attention in preparation of mixed matrix membranes (MMMs). Herein, poly(ethylene glycol) microcapsules (PMC) are synthesized via distillation precipitation polymerization and embedded into the polyetherimide (Ultem®1000) matrix to fabricate MMMs for CO2 capture. The PMC exhibits a preferential hollow structure within the Ultem matrix to furnish highways within membrane, and thus achieve high gas permeability. Meanwhile, the favorable affinity of poly(ethylene glycol) (PEG) microcapsule with ether oxygen group (EO) towards CO2 enhances the CO2 solubility selectivity. Such integration of physical and chemical microenvironments in the as-designed PEG microcapsule affords highly enhanced CO2 separation performance. Compared to pristine Ultem®1000, the membrane with 2.5 wt% PMC loading exhibits 310% increment in CO2 permeability and 22% increment in CO2/N2 selectivity, which shows the promising prospects of designing PEG-containing microcapsules as the filler of MMMs for CO2 capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Du, N.; Park, H. B.; Dal-Cin, M. M.; Guiver, M. D. Advances in high permeability polymeric membrane materials for CO2 separations. Energy Environ. Sci. 2012, 5, 7306–7322.

    CAS  Google Scholar 

  2. Sanders, D. F.; Smith, Z. P.; Guo, R.; Robeson, L. M.; McGrath, J. E.; Paul, D. R.; Freeman, B. D. Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 2013, 54, 4729–4761.

    CAS  Google Scholar 

  3. D’Alessandro, D. M.; Smit, B.; Long, J. R. Carbon dioxide capture: prospects for new materials. Angew. Chem. Int. Ed. 2010, 49, 6058–6082.

    Google Scholar 

  4. Vu, D. Q.; Koros, W. J.; Miller, S. J. Mixed matrix membranes using carbon molecular sieves-I Preparation and experimental results. J. Membr. Sci. 2003, 211, 311–334.

    CAS  Google Scholar 

  5. Jamil, A.; Oh, P. C.; Shariff, A. F. Polyetherimide-montmorillonite mixed matrix hollow fibre membranes: effect of inorganic/organic montmorillonite on the CO2/CH4 separation. Sep. Purif. Technol. 2018, 206, 256–267.

    CAS  Google Scholar 

  6. Jeong, M. K.; Park, J. H.; Nam, S. Y. Fabrication of PEG-polyimide copolymer hollow fiber membranes for gas separation. J. Nanosci. Nanotechnol. 2017, 17, 7490–7496.

    CAS  Google Scholar 

  7. Yong, W. F.; Li, F. Y.; Xiao, Y. C.; Chung, T. S.; Tong, Y. W. High performance PIM-1/Matrimid hollow fiber membranes for CO2/CH4, O2/N2 and CO2/N2 separation. J. Membr. Sci. 2013, 443, 156–169.

    CAS  Google Scholar 

  8. Dong, G. X.; Li, H. Y.; Chen, V. Factors affect defect-free Matrimid (R) hollow fiber gas separation performance in natural gas purification. J. Membr. Sci. 2010, 353, 17–27.

    CAS  Google Scholar 

  9. Park, H. B.; Jung, C. H.; Lee, Y. M.; Hill, A. J.; Pas, S. J.; Mudie, S. T.; van Wagner, E.; Freeman, B. D.; Cookson, D. J. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 2007, 318, 254–258.

    CAS  PubMed  Google Scholar 

  10. Zhang, C.; Liu, B.; Wang, G.; Yu, G.; Zou, X.; Zhu, G. Small-pore CAU-21 and porous PIM-1 in mixed-matrix membranes for improving selectivity and permeability in hydrogen separation. Chem. Commun. 2019, 55, 7101–7104.

    CAS  Google Scholar 

  11. Yeong, Y. F.; Khoo, T. S. Fabrication of amino-functionalized CAU-1/cellulose acetate mixed matrix membranes for CO2/N2 separation. Key Eng. Mater. 2019, 797, 39–47.

    Google Scholar 

  12. Hossain, I.; Nam, S. Y.; Rizzuto, C.; Barbieri, G.; Tocci, E.; Kim, T. H. PIM-polyimide multiblock copolymer-based membranes with enhanced CO2 separation performances. J. Membr. Sci. 2019, 574, 270–281.

    CAS  Google Scholar 

  13. Bernabe, D. P.; Caparanga, A. R.; Hu, C. C.; You, S. J.; Lee, K. R.; Lai, J. Y. MOF-modified high permeability polyimide membrane for gas separation. Key Eng. Mater. 2019, 801, 313–318.

    Google Scholar 

  14. Swaidan, R.; Ghanem, B. S.; Litwiller, E.; Pinnau, I. Pure- and mixed-gas CO2/CH4 separation properties of PIM-1 and an amidoxime-functionalized PIM-1. J. Membr. Sci. 2014, 457, 95–102.

    CAS  Google Scholar 

  15. Guan, W.; Dai, Y.; Dong, C.; Yang, X.; Xi, Y. Zeolite imidazolate framework (ZIF)-based mixed matrix membranes for CO2 separation: a review. J. Appl. Polym. Sci. 2020, 48968.

    Google Scholar 

  16. Sabetghadam, A.; Liu, X.; Benzaqui, M.; Gkaniatsou, E.; Orsi, A.; Lozinska, M. M.; Sicard, C.; Johnson, T.; Steunou, N.; Wright, P. A.; Serre, C.; Gascon, J.; Kapteijn, F. Influence of filler pore structure and polymer on the performance of MOF-based mixed-matrix membranes for CO2 capture. Chem. Eur. J. 2018, 24, 7949–7956.

    CAS  PubMed  Google Scholar 

  17. Yu, G. L.; Wang, Z. Y.; Liu, X. T.; Zhu, G. S.; Zou, X. Q. Mixed matrix membranes derived from nanoscale porous organic frameworks for permeable and selective CO2 separation. J. Membr. Sci. 2019, 591, 117343.

    Google Scholar 

  18. Ishaq, S.; Tamime, R.; Bilad, M. R.; Khan, A. L. Mixed matrix membranes comprising of polysulfone and microporous Bio-MOF-1: preparation and gas separation properties. Sep. Purif. Technol. 2019, 210, 442–451.

    CAS  Google Scholar 

  19. Dong, G.; Zhang, J.; Wang, Z.; Wang, J.; Zhao, P.; Cao, X.; Zhang, Y. Interfacial property modulation of PIM-1 through polydopamine-derived submicrospheres for enhanced CO2/N2 separation performance. ACS Appl. Mater. Interfaces 2019, 11, 19613–19622.

    CAS  PubMed  Google Scholar 

  20. Ding, X.; Tan, F.; Zhao, H.; Hua, M.; Wang, M.; Xin, Q.; Zhang, Y. Enhancing gas permeation and separation performance of polymeric membrane by incorporating hollow polyamide nanoparticles with dense shell. J. Membr. Sci. 2019, 770–771, 53–60.

    Google Scholar 

  21. Lee, J. H.; Kwon, H. T.; Bae, S.; Kim, J.; Kim, J. H. Mixed-matrix membranes containing nanocage-like hollow ZIF-8 polyhedral nanocrystals in graft copolymers for carbon dioxide/methane separation. Sep. Purif. Technol. 2018, 207, 427–434.

    CAS  Google Scholar 

  22. Zhu, B.; Liu, J.; Wang, S.; Wang, J.; Liu, M.; Yan, Z.; Shi, F.; Li, J.; Li, Y. Mixed matrix membranes containing well-designed composite microcapsules for CO2 separation. J. Membr. Sci. 2019, 572, 650–657.

    CAS  Google Scholar 

  23. Xiao, Y. C.; Low, B. T.; Hosseini, S. S.; Chung, T. S.; Paul, D. R. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas-a review. Prog. Polym. Sci. 2009, 34, 561–580.

    CAS  Google Scholar 

  24. G. Castruita-de León, Yeverino-Miranda, C. Y.; Montes-Luna, A. D. J.; Meléndez-Ortiz, H. I.; Alvarado-Tenorio, G.; García-Cerda, L. A. Amine-impregnated natural zeolite as filler in mixed matrix membranes for CO2/CH4 separation. J. Appl. Polym. Sci. 2019, 137, 48286.

    Google Scholar 

  25. Ma, C.; Urban, J. J. Enhanced CO2 capture and hydrogen purification by hydroxy metal-organic framework/polyimide mixed matrix membranes. ChemSusChem 2019, 12, 4405–4411.

    CAS  PubMed  Google Scholar 

  26. Wang, S. F.; Feng, J. Y.; Wu, H.; Li, Y. F.; Liu, Y.; Li, X. Q.; Xin, Q. P.; Jiang, Z. Y. Enhanced CO2 separation properties by incorporating poly(ethylene glycol)-containing polymeric submicrospheres into polyimide membrane. J. Membr. Sci. 2015, 473, 310–317.

    CAS  Google Scholar 

  27. Zhang, H.; Guo, R.; Zhang, J.; Li, X. Facilitating CO2 transport across mixed matrix membranes containing multifunctional nanocapsules. ACS Appl. Mater. Interfaces 2018, 10, 43031–43039.

    CAS  PubMed  Google Scholar 

  28. Zornoza, B.; Esekhile, O.; Koros, W. J.; Téllez, C.; Coronas, J. Hollow silicalite-1 sphere-polymer mixed matrix membranes for gas separation. Sep. Purif. Technol. 2011, 77, 137–145.

    CAS  Google Scholar 

  29. Hou, J.; Li, X.; Guo, R.; Zhang, J.; Wang, Z. Mixed matrix membranes with fast and selective transport pathways for efficient CO2 separation. Nanotechnology 2018, 29, 125706.

    PubMed  Google Scholar 

  30. Hwang, S.; Chi, W. S.; Lee, S. J.; Im, S. H.; Kim, J. H.; Kim, J. Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4 gas separation. J. Membr. Sci. 2015, 480, 11–19.

    CAS  Google Scholar 

  31. Ghanem, A. S.; Ba-Shammakh, M.; Usman, M.; Khan, M. F.; Dafallah, H.; Habib, M. A. M.; Al-Maythalony, B. A. High gas permselectivity in ZIF-302/polyimide self-consistent mixed-matrix membrane. J. Appl. Polym. Sci. 2019, 137, 48513.

    Google Scholar 

  32. Aguilar-Lugo, C.; Suárez-García, F.; Hernández, A.; Miguel, J. A.; Lozano, Á. E.; de la Campa, J. G.; Álvarez, C. New materials for gas separation applications: mixed matrix membranes made from linear polyimides and porous polymer networks having lactam groups. Ind. Eng. Chem. Res. 2019, 58, 9585–9595.

    CAS  Google Scholar 

  33. Zhu, H.; Jie, X.; Wang, L.; Kang, G.; Liu, D.; Cao, Y. Enhanced gas separation performance of mixed matrix hollow fiber membranes containing post-functionalized S-MIL-53. J. Energy Chem. 2018, 27, 781–790.

    Google Scholar 

  34. Kang, Z.; Peng, Y.; Qian, Y.; Yuan, D.; Addicoat, M. A.; Heine, T.; Hu, Z.; Tee, L.; Guo, Z.; Zhao, D. Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem. Mat. 2016, 28, 1277–1285.

    CAS  Google Scholar 

  35. Werner Stober, A. F. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69.

    Google Scholar 

  36. Bai, F.; Yang, X.; Huang, W. Synthesis of narrow or monodisperse poly(divinylbenzene) microspheres by distillation-precipitation polymerization. Macromolecules 2004, 37, 9746–9752.

    CAS  Google Scholar 

  37. Tin, P. Effects of cross-linking modification on gas separation performance of matrimid membranes. J. Membr. Sci. 2003, 225, 77–90.

    CAS  Google Scholar 

  38. Ahmad, J.; Hägg, M. B. Development of matrimid/zeolite 4A mixed matrix membranes using low boiling point solvent. Sep. Purif. Technol. 2013, 115, 190–197.

    CAS  Google Scholar 

  39. Aziz, F.; Ismail, A. F. Preparation and characterization of cross-linked Matrimid® membranes using para-phenylenediamine for O2/N2 separation. Sep. Purif. Technol. 2010, 73, 421–428.

    CAS  Google Scholar 

  40. Wang, S. F.; Liu, Y.; Huang, S. X.; Wu, H.; Li, Y. F.; Tian, Z. Z.; Jiang, Z. Y. Pebax-PEG-MWCNT hybrid membranes with enhanced CO2 capture properties. J. Membr. Sci. 2014, 460, 62–70.

    CAS  Google Scholar 

  41. Vanherck, K.; Aerts, A.; Martens, J. Vankelecom, I. Hollow filler based mixed matrix membranes. Chem. Commun. 2010, 46, 2492–2494.

    CAS  Google Scholar 

  42. Peng, F. B.; Sun, H. L; Wang, Y. Q.; Liu, J. Q.; Jiang, Z. Y. Hybrid organic-inorganic membrane: solving the tradeoff between permeability and selectivity. Chem. Mater. 2015, 17, 6790–6796.

    Google Scholar 

  43. Lin, H.; Freeman, B. D. Materials selection guidelines for membranes that remove CO2 from gas mixtures. J. Mol. Struct. 2005, 739, 57–74.

    CAS  Google Scholar 

  44. Dai, Y.; Karvan, Sholl, S.; Koros, W. J. Ultem®ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations. J. Membr. Sci. 2012, 401–402, 76–82.

    Google Scholar 

  45. Bae, T. H.; Lee, J. S.; Qiu, W. L.; Koros, W. J.; Jones, C. W.; Nair, S. A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. Angew. Chem. Int. Ed. 2010, 49, 9863–9866.

    CAS  Google Scholar 

  46. Mubashir, M.; Yeong, Y. F.; Lau, K. K.; Chew, T. L.; Norwahyu, J. Efficient CO2/N2 and CO2/CH4 separation using NH2-MIL-53(Al)/cellulose acetate (CA) mixed matrix membranes. Sep. Purif. Technol. 2018, 199, 140–151.

    CAS  Google Scholar 

  47. Hao, L.; Li, P.; Chung, T. S. PIM-1 as an organic filler to enhance the gas separation performance of Ultem polyetherimide. J. Membr. Sci. 2014, 453, 614–623.

    CAS  Google Scholar 

  48. Ismail, A. F.; Hashemifard, S. A.; Matsuura, T. Facilitated transport effect of Ag+ ion exchanged halloysite nanotubes on the performance of polyetherimide mixed matrix membrane for gas separation. J. Membr. Sci. 2011, 379, 378–385.

    CAS  Google Scholar 

  49. Husain, S.; Koros, W. J. Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation. J. Membr. Sci. 2007, 288, 195–207.

    CAS  Google Scholar 

  50. Koolivand, H.; Sharif, A.; Kashani, M. R.; Karimi, M.; Salooki, M. K.; Semsarzadeh, M. A. Functionalized graphene oxide/polyimide nanocomposites as highly CO2-selective membranes. J. Polym. Res. 2014, 21, 599.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21878277), Natural Science Foundation of Henan province (No. 182300410268), China Postdoctoral Science Foundation (No. 2017T100538), and Outstanding Young Talent Research Fund of Zhengzhou University (No. 1521324002). In addition, we would like to express our gratitude for the instrument support received from Center of Advanced Analysis & Computational Science, Zhengzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Fan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, YY., Liu, M., Wang, JT. et al. Enhanced Gas Separation Performance by Embedding Submicron Poly(ethylene glycol) Capsules into Polyetherimide Membrane. Chin J Polym Sci 39, 355–364 (2021). https://doi.org/10.1007/s10118-021-2521-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2521-3

Keywords

Navigation