Skip to main content
Log in

Fundamental Reasons for the Similarity and Differences of the Mass Spectra of Various Astronomical Objects

  • Published:
Astrophysics Aims and scope

The mass spectra of astronomical objects of various kinds are compared: cosmic dust, asteroids, planets, stars, star clusters, galaxies, and galactic clusters. The authors have previously noted a similarity in the (initial) mass functions for relatively massive objects (stars, galaxies, galactic clusters). In this paper the range of masses of astronomical objects is extended to the limit and covers roughly 68 orders of magnitude. It is confirmed that the initial mass spectra of objects in ensembles formed by fragmentation (a fast process) may, in a first approximation in a statistically significant range be represented by a basis (reference) function dN / dM ∞ M-2, where dN is the number of objects in a range [M, M+dM] of masses. The significance of this function is the probability density of formation of objects, which total mass in a range [d ln M] of masses is independent of the mass M or, in other words, reduces to the absence of a distinct mass scale. The physical reasons determining the deviation of the initial mass functions from the reference function are discussed briefly. It is noted that the mass spectra in ensembles of objects formed by mergers (coagulation in the case of dust), i.e., in a relatively slow evolutionary process, can also be of a form close a reference function. The main reason for this universality lies in the random character of the processes of formation and evolution of these ensembles of astronomical objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Zwicky, Phys. Rev. 61, 489 (1942).

    ADS  Google Scholar 

  2. E. Salpeter, Astrophys. J. 121, 161 (1955).

    ADS  Google Scholar 

  3. S. V. Vereshchagin, Astron. zh. 65, 281 (1988).

    ADS  Google Scholar 

  4. B. Binggeli and T. Hascher, Publ. Astron. Soc. Pacif. 119, 592 (2007).

    ADS  Google Scholar 

  5. B. Shustov and A. Tutukov, Astron. Rep. 62, 724 (2018).

    ADS  Google Scholar 

  6. J. Berton, Random Fragmentation and Coagulation Processes, Cambridge University Press (2006).

  7. F. K. Wittel, H. A. Carmona, F. Kun, et al., Int. J. Fract. 154, 105. 2008).

    Google Scholar 

  8. M. von Smoluchowski, Phys. Z. 17, 557 (1916).

    ADS  Google Scholar 

  9. T. Kaminski, astro-ph/1903. 09558 (2019).

  10. P. Williams, Mon. Not. Roy. Astron. Soc. 445, 1253 (2014).

    ADS  Google Scholar 

  11. B-C. Koo, J-H. Kim, H. Oh, et al., astro-ph/1912. 01924 (2019).

  12. F. Priestley, M. Barlow, I. De Looze, et al., astro-ph/1912. 02117 (2019).

  13. Y. A. Fadeyev Astrophys. Space Sci. 95, 357 (1983).

    ADS  Google Scholar 

  14. Y. A. Fadeyev, Mon. Not. Roy. Astron. Soc. 233, 65 (1988).

    ADS  Google Scholar 

  15. C. Kochanek, astro-ph/1407. 4856.

  16. C. Agurto-Gangas, J. Pineda, L. Szucs, et al., Astron. Astrophys. 623, 147 (2019).

    Google Scholar 

  17. J. S. Mathis, W. Rumpl, and K. H. Nordsieck, Astrophys. J. 217, 425 (1977).

    ADS  Google Scholar 

  18. E. Kruegel, The Physics of Interstellar Dust, Institute of Physics Publishing, Bristol and Philadelphia (2003).

    Google Scholar 

  19. H. Hirashita, H. Kobayashi, EPS 65, 1083 (2013).

    Google Scholar 

  20. J. C. Weingartner and B. T. Draine, Astrophys. J. 548, 296 (2001).

    ADS  Google Scholar 

  21. A. P. Jones, L. Fanciullo, M. Köhler, et al., Astron. Astrophys. 558, A62 (2013).

    Google Scholar 

  22. R. C. Blaauw, M. D. Campbell-Brown, and R. J. Weryk, Mon. Not. Roy. Astron. Soc. 412 (2033 (2011).

    ADS  Google Scholar 

  23. D. Janches, C. Brunini, and J. L. Hormaechea, Astron. J. 157, 240 (2019).

    ADS  Google Scholar 

  24. R. C. Blaauw, M. D. Campbell-Brown, and R. J. Weryk, Mon. Not. Roy. Astron. Soc. 414, 3322 (2011).

    ADS  Google Scholar 

  25. G. Drolshagen, D. Koschny, S. Drolshagen, et al., P&SS 143, 21 (2017).

    ADS  Google Scholar 

  26. B. M. Shustov, Scientific Papers, Institute of Astronomy Russian Academy of Sciences 4, 356 (2019).

  27. S. Wallace and T. Quinn, arXiv e-prints, arXiv:1810. 07201 (2018).

  28. W. K. Hartmann and A. C. Hartmann, Icarus 8, 361 (1968).

    ADS  Google Scholar 

  29. K. A. Holsapple, K. Wunneman, and P. Michel, in Modeling Asteroid Collisions and Impact Processes, p. 679 (2015).

    Google Scholar 

  30. M. Jutzi, in: IAU General Assembly 29, 2246674 (2015).

    Google Scholar 

  31. J. S. Dohnanyi, JGR 74, 2531 (1969).

    ADS  Google Scholar 

  32. W. F. Bottke, D. D. Durda, D. Nesvorny, et al., Icarus 175, 111 (2005).

    ADS  Google Scholar 

  33. B. J. Gladman, D. R. Davis, C. Neese, et al., Icarus 202, 104 (2009).

    ADS  Google Scholar 

  34. I. Wlodarczyk and J. Leliwa-Kopystynski, Meteoritics and Planetary Science 49, 1795 (2014).

    ADS  Google Scholar 

  35. A. Johansen, M. MacLow, P. Lacerda, et al., astro-ph/1503. 07347 (2015).

  36. C. Yang, H. Zhao, L. Bruzzone, et al., astro-ph/ 1912, 01240 (2019).

  37. J. B. Pollack, O. Hubickyj, P. Bodenheimer, et al., Icarus 124, 62 (1996).

    ADS  Google Scholar 

  38. T. Birnstiel, H. Klahr, and B. Ercolano, Astron. Astrophys. 539, A148 (2012).

    ADS  Google Scholar 

  39. M. Lambrechts and A. Johansen, Astron. Astrophys. 544, A32 (2012).

    ADS  Google Scholar 

  40. A. Tutukov and A. Fedorova, Astron. Rep. 56, 775 (2012).

    ADS  Google Scholar 

  41. S. Wallace and R. Quinn, Mon. Not. Roy. Astron. Soc. 489, 2159 (2019).

    ADS  Google Scholar 

  42. W. Hubbard, M. Hattori, A. Burrows, et al., Astrophys. J. 658, 59 (2007).

    ADS  Google Scholar 

  43. R. Malhotra, Astrophys. J. 808, 71 (2015).

    ADS  Google Scholar 

  44. N. Brugger, Y. Alibert, S. Ataiee, et al., Astron. Astrophys. 619, 174 (2018).

    ADS  Google Scholar 

  45. D. Bennetn, R. Akeson, Y. Alibert, et al., BAAS, 51, 505 (2019).

    Google Scholar 

  46. A. G. Masevich and A. V. Tutukov, Stellar Evolution: Theory and Observations [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  47. P. Kroupa, Mon. Not. Roy. Astron. Soc. 322, 231 (2001).

    ADS  Google Scholar 

  48. G. Suarez, J. Downes, C. Roman-Zuniga, et al., Mon. Not. Roy. Astron. Soc. 486, 1718 (2019).

    ADS  Google Scholar 

  49. K. Wagner, D. Apai, and K. Kratter, astro-ph/1904. 06438 (2019).

  50. A. Bohn, M. Kenworthy, C. Ginski, et al., astro-ph/1912. 04284 (2019).

  51. S. Zhou, H. Mo, C. Li, et al., Mon. Not. Roy. Astron. Soc. 485, 5256 (2019).

    ADS  Google Scholar 

  52. D. Guszeinov, P. Hopkins, and A. Graus, Mon. Not. Roy. Astron. Soc. 485, 4852 (2019).

    ADS  Google Scholar 

  53. A. Tutukov, Astron. Astrophys. 70, 57 (1978).

    ADS  Google Scholar 

  54. D. Cook, J. Lee, A. Adamo, et al., astro-ph/1902. 00082 (2019).

  55. M. Fujii and P. Zwart, Mon. Not. Roy. Astron. Soc. 449, 726 (2015).

    ADS  Google Scholar 

  56. L. Johnson, A. Seth, J. Dalcanton, et al., Astrophys. J. 839, 78 (2017).

    ADS  Google Scholar 

  57. E. Rosowsky, Publ. Astron. Soc. Pacif. 117, 1403 (2005).

    ADS  Google Scholar 

  58. S. Benincasa, S. Loebman, A. Wetzel, et al., astro-ph/1911. 05251 (2019).

  59. N. Henden, E. Puchwein, S. Shen, et al., Mon. Not. Roy. Astron. Soc. 479, 5385 (2018).

    ADS  Google Scholar 

  60. R. Bhatawdekar, Ch. Concelice, B. Margalef-Bentabol, et al., Mon. Not. Roy. Astron. Soc. 486, 3805 (2019).

    ADS  Google Scholar 

  61. M. Neuzil, P. Mansfeld, and A. Kravtsov, astro-ph/1912. 04397 (2019).

  62. A. Tutukov, Astron. Rep. 63, 79 (2019).

    ADS  Google Scholar 

  63. H. Zeng and D. Yan, astro-ph/1912.10965 (2019).

  64. E. Kourkchi and R. Tully, Astrophys. J. 843, 16 (2017).

    ADS  Google Scholar 

  65. H. Bohringer, G. Chon, and M. Fukugita, Astron. Astrophys. 608, 62 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tutukov.

Additional information

Translated from Astrofizika, Vol. 63, No. 4, pp. 631-647 (November 2020)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tutukov, A.V., Shustov, B.M. Fundamental Reasons for the Similarity and Differences of the Mass Spectra of Various Astronomical Objects. Astrophysics 63, 552–565 (2020). https://doi.org/10.1007/s10511-020-09658-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-020-09658-9

Keywords

Navigation