Skip to main content
Log in

PPN Motion of S-Stars Around Sgr A*

  • Published:
Astrophysics Aims and scope

The equations of motion for the parametrized post-Newtonian (PPN) formalism for several S-stars close to the relativistic compact object Sgr A* at the center of the galaxy are examined. The effect of the difference in the periods of Newtonian and post-Newtonian orbits is taken into account. The period of the best approximation to the PN-orbit of the star S2 exceeds the period of the Newtonian orbit by 16 days. The PPN parameters βPPN and γPPN are measured. Bayesian methods are used for fitting the trajectories of the PPN motion. Posterior estimates of βPPN and γPPN \( {0.97}_{-0.65}^{+0.42} \) and \( {0.81}_{-0.60}^{+0.46} \) are obtained, respectively. This result confirms the prediction of the general theory of relativity for the post-Newtonian equations of motion under conditions close to Sgr A*.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Boehle, et al., Astrophys. J. 830, 17 (2016).

    ADS  Google Scholar 

  2. D. S. Chu, et al., Astrophys. J. 854, 12 (2018).

    ADS  Google Scholar 

  3. T. Do, et al., Science 365, 664 (2019).

    ADS  Google Scholar 

  4. S. Gillessen, et al., Astrophys. J. 837, 30 (2017).

    ADS  Google Scholar 

  5. A. Eckart, et al., Mon. Not. Roy. Astron. Soc. 331, 917 (2002).

    ADS  Google Scholar 

  6. R. Genzel, et al., Astrophys. J. 594, 812 (2003).

    ADS  Google Scholar 

  7. S. Gillessen, et al., Astrophys. J. 692, 1075 (2009).

    ADS  Google Scholar 

  8. S. Gillessen, et al., Astrophys. J. 707, L114 (2009).

    ADS  Google Scholar 

  9. M. Habibi, et al., Astrophys. J. 847, 120 (2017).

    ADS  Google Scholar 

  10. T. Lacroix, Astron. Astrophys. 619, A46 (2018).

    ADS  Google Scholar 

  11. N. Mouawad, et al., Astron. Nachr. 326, 83 (2005).

    ADS  Google Scholar 

  12. S. Nishiyama, et al., Publ. Astron. Soc. Japan 70(4), 74 (2018).

    ADS  Google Scholar 

  13. R. Schödel, et al., Astron. Nachr. 324, 535 (2003).

    Google Scholar 

  14. R. Schödel, et al., Astrophys. J. 596, 1015 (2003).

    ADS  Google Scholar 

  15. M. Zajaèek and A. A. Tursunov, Astron Nachr. 339, 324 (2018).

    ADS  Google Scholar 

  16. F. Eisenhauer, et al., Astrophys. J. 597, L121 (2003).

    ADS  Google Scholar 

  17. GRAVITY Collaboration (R. Abuter et al. ), Astron. Astrophys. 625, L10 (2019).

    ADS  Google Scholar 

  18. L. Iorio, Phys. Rev. D 84, 124001 (2011).

    ADS  Google Scholar 

  19. J. H. Jørgensen, O. E. Bjælde, and S. Hannestad, Mon. Not. Roy. Astron. Soc. 458, 3614 (2016).

    ADS  Google Scholar 

  20. I. Waisberg, et al., Mon. Not. Roy. Astron. Soc. 476, 3600 (2018).

    ADS  Google Scholar 

  21. F. Zhang, Y. Lu, and Q. Yu, Astrophys. J. 809, 127 (2015).

    ADS  Google Scholar 

  22. I. M. Christie, et al., Mon. Not. Roy. Astron. Soc. 459, 2420 (2016).

    ADS  Google Scholar 

  23. M. Shcartmann, A. Burkert, and A. Ballone, Astron. Astrophys. 616, L8 (2018).

    ADS  Google Scholar 

  24. D. Borka, et al., J. Cosmol. Astropart. Phys. 11, 050 (2013).

    ADS  Google Scholar 

  25. A. F. Zakharov, EPJ Web of Conf. 191, 01010 (2018).

    Google Scholar 

  26. A. F. Zakharov, et al., J. Cosmol. Astropart. Phys. 04, 050 (2018).

    ADS  Google Scholar 

  27. GRAVITY Collaboration (A. Amorim, et al.), Mon. Not. Roy. Astron. Soc. 489, 4606 (2019).

    ADS  Google Scholar 

  28. D. Borka, et al., Phys. Rev. D, 85, 124004 (2012).

    Google Scholar 

  29. A. F. Zakharov, et al., Adv. in Space Res. 54, 1108 (2014).

    Google Scholar 

  30. K. F. Dialektopoulos, et al., Phys. Rev. D, 99, 044053 (2019).

    MathSciNet  Google Scholar 

  31. D. Borka, et al., Astropart. Phys. 79, 41 (2016).

    ADS  Google Scholar 

  32. M. Rahman and A. A. Sen, Phys. Rev. D 99, 024052 (2019).

    ADS  MathSciNet  Google Scholar 

  33. A. F. Zakharov, et al., J. Cosmol. Astropart. Phys. 05, 045 (2016).

    ADS  Google Scholar 

  34. M. Grould, et al., Astron. Astrophys. 608, A60 (2017).

    Google Scholar 

  35. L. Iorio, Mon. Not. Roy. Astron. Soc. 411, 453 (2011).

    ADS  Google Scholar 

  36. A. Gualandris, S. Gillessen, and D. Merritt, Mon. Not. Roy. Astron. Soc. 409, 1146 (2010).

    ADS  Google Scholar 

  37. GRAVITY Collaboration (R. Abuter et al. ), Astron. Astrophys. 615, L15 (2018).

    ADS  Google Scholar 

  38. L. Iorio and F. Zhang, Astrophys. J. 839, 3 (2017).

    ADS  Google Scholar 

  39. M. Parsa, et al., Astrophys. J. 845, 22 (2017).

    ADS  Google Scholar 

  40. M. Preto and P. Saha, Astrophys. J. 703, 1743 (2009).

    ADS  Google Scholar 

  41. H. Saida, et al., Publ. Astron. Soc. Japan, 71(6), 128 (2019).

    ADS  Google Scholar 

  42. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Pergamon, Oxford (1971).

    MATH  Google Scholar 

  43. C. Misner, K. Thorne, and J. Wheeler, Gravitation, Freeman, San Francisco (1973).

    Google Scholar 

  44. V. A. Brumberg, Essential relativistic celestial mechanics, Adam Hilger IOP Publ. Ltd, N. Y. (1991).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Gainutdinov.

Additional information

Translated from Astrofizika, Vol. 63, No. 4, pp. 533-545 (November 2020).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gainutdinov, R.I. PPN Motion of S-Stars Around Sgr A*. Astrophysics 63, 470–481 (2020). https://doi.org/10.1007/s10511-020-09651-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-020-09651-2

Keywords

Navigation