Skip to main content
Log in

Metabolic engineering of Escherichia coli for polyamides monomer δ-valerolactam production from feedstock lysine

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nylon 5 and nylon 6,5 are recently explored as new commercial polyamides, of which the monomer includes δ-valerolactam. In this study, a novel catalytic activity of lysine 2-monooxygenase (DavB) was explored to produce δ-valerolactam from l-pipecolic acid (L-PA), functioning as oxidative decarboxylase on a cyclic compound. Recombinant Escherichia coli BS01 strain expressing DavB from Pseudomonas putida could synthesize δ-valerolactam from l-pipecolic acid with a concentration of 90.3 mg/L. Through the co-expression of recombinant apoptosis-inducing protein (rAIP) from Scomber japonicus, glucose dehydrogenase (GDH) from Bacillus subtilis, Δ1-piperideine-2-carboxylae reductase (DpkA) from P. putida and lysine permease (LysP) from E. coli with DavB, δ-valerolactam was produced with the highest concentration of 242 mg/L. α-Dioxygenases (αDox) from Oryza sativa could act as a similar catalyst on l-pipecolic acid. A novel δ-valerolactam synthesis pathway was constructed entirely via microbial conversion from feedstock lysine in this study. Our system has great potential in the development of a bio-nylon production process.

Key points

DavB performs as an oxidative decarboxylase on L-PA with substrate promiscuity.

Strain with rAIP, GDH, DpkA, LysP, and DavB coexpression could produce δ-valerolactam.

This is the first time to obtain valerolactam entirely via biosynthesis from lysine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adkins J, Pugh S, McKenna R, Nielsen DR (2012) Engineering microbial chemical factories to produce renewable “biomonomers”. Front Microbiol 3:313

    PubMed  PubMed Central  Google Scholar 

  • Adkins J, Jordan J, Nielsen DR (2013) Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate. Biotechnol Bioeng 110:1726–1734

    CAS  PubMed  Google Scholar 

  • Altaras NE, Cameron DC (1999) Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl Environ Microbiol 65:1180–1185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    CAS  PubMed  Google Scholar 

  • Becker J, Wittmann C (2015) Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew Chem Int Ed 54:3328–3350

    CAS  Google Scholar 

  • Becker J, Reinefeld J, Stellmacher R, Schäfer R, Lange A, Meyer H, Lalk M, Zelder O, Abendroth G, Schröder H (2013) Systems-wide analysis and engineering of metabolic pathway fluxes in bio-succinate producing Basfia succiniciproducens. Biotechnol Bioeng 110:3013–3023

    CAS  PubMed  Google Scholar 

  • Bermudez M, Leon S, Aleman C, Munoz-Guerra S (2000) Comparison of lamellar crystal structure and morphology of nylon 46 and nylon 5. Polymer 41:8961–8973

    CAS  Google Scholar 

  • Cao YX, Xiao WH, Liu D, Zhang JL, Ding MZ, Yuan YJ (2015) Biosynthesis of odd-chain fatty alcohols in Escherichia coli. Metab Eng 29:113–123

    CAS  PubMed  Google Scholar 

  • Celinska E (2010) Debottlenecking the 1,3-propanediol pathway by metabolic engineering. Biotechnol Adv 28:519–530

    CAS  PubMed  Google Scholar 

  • Chae TU, Ko YS, Hwang KS, Lee SY (2017) Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams. Metab Eng 41:82–91

    CAS  PubMed  Google Scholar 

  • Cheng J, Huang Y, Mi L, Chen W, Wang D, Wang Q (2018) An economically and environmentally acceptable synthesis of chiral drug intermediate L-pipecolic acid from biomass-derived lysine via artificially engineered microbes. J Ind Microbiol Biotechnol 45:405–415

    CAS  PubMed  Google Scholar 

  • Chung H, Yang JE, Ha JY, Chae TU, Shin JH (2015) Bio-based production of monomers and polymers by metabolically engineered microorganisms. Curr Opin Biotechnol 36:73–84

    CAS  PubMed  Google Scholar 

  • Curran KA, Alper HS (2012) Expanding the chemical palate of cells by combining systems biology and metabolic engineering. Metab Eng 14:289–297

    CAS  PubMed  Google Scholar 

  • Dairo TO, Nelson NC, Slowing II, Angelici RJ, Woo LK (2016) Aerobic oxidation of cyclic amines to lactams catalyzed by ceria-supported nanogold. Catal Lett 146:2278–2291

    CAS  Google Scholar 

  • Eggeling L, Bott M (2015) A giant market and a powerful metabolism: L-lysine provided by Coryne-bacterium glutamicum. Appl Microbiol Biotechnol 99:3387–3394

    CAS  PubMed  Google Scholar 

  • Hanai T, Atsumi S, Liao JC (2007) Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl Environ Microbiol 73:7814–7818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang M, Cheng J, Chen P, Zheng G, Wang D, Hu Y (2019) Efficient production of succinic acid in engineered Escherichia coli strains controlled by anaerobically-induced nirB promoter using sweet potato waste hydrolysate. J Environ Manage 237:147–154

    CAS  PubMed  Google Scholar 

  • Inui M, Murakami S, Okino S, Kawaguchi H, Vertes AA, Yukawa H (2004) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196

    CAS  PubMed  Google Scholar 

  • Kaltenbach HM, Wilke A, Bocker S (2007) SAMPI: protein identification with mass spectra alignments. BMC Bioinf 8:102

    Google Scholar 

  • Koeduka T, Matsui K, Akakabe Y, Kajiwara T (2000) Molecular characterization of fatty acid alpha-hydroperoxide-forming enzyme (alpha-oxygenase) in rice plants. Biochem Soc Trans 28:765–768

    CAS  PubMed  Google Scholar 

  • Koeduka T, Matsui K, Akakabe Y, Kajiwara T (2002) Catalytic properties of rice alpha-oxygenase. A comparison with mammalian prostaglandin H synthases. J Biol Chem 277:22648–22655

    CAS  PubMed  Google Scholar 

  • Lee SY, Kim HU (2015) Systems strategies for developing industrial microbial strains. Nat Biotechnol 33:1061–1072

    CAS  PubMed  Google Scholar 

  • Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 8:536–546

    CAS  PubMed  Google Scholar 

  • Liu P, Zhang H, Lv M, Hu M, Li Z, Gao C, Xu P, Ma C (2014) Enzymatic production of 5-aminovalerate from l-lysine using l-lysine monooxygenase and 5-aminovaleramide amidohydrolase. Sci Rep 4:5657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mats H, Ines PL, Maria JR, Carmen C (2005) a-Dioxygenases. Biochem Biophys Res Commun 338:169–174

    Google Scholar 

  • Müller M, Katzberg M, Bertau M, Hummel W (2010) Highly efficient and stereoselective biosynthesis of (2S,5S)-hexanediol with a dehydrogenase from Saccharomyces cerevisiae. Org Biomol Chem 8(7):1540–1550

    PubMed  Google Scholar 

  • Na D, Kim TY, Lee SY (2010) Construction and optimization of synthetic pathways in metabolic engineering. Curr Opin Microbiol 13:363–370

    CAS  PubMed  Google Scholar 

  • Naik S, Basu A, Saikia R, Madan B, Paul P (2010) Lipases for use in industrial biocatalysis: specificity of selected structural groups of lipases. J Mol Catal B Enzym 65:18–23

    CAS  Google Scholar 

  • Nguyen CM, Kim JS, Hwang HJ, Park MS, Choi GJ, Choi YH, Jang KS, Kim JC (2012) Production of L-lactic acid from a green microalga, Hydrodictyon reticulum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli. Bioresour Technol 10:552–559

    Google Scholar 

  • Oh YH, Eom IY, Joo JC, Yu JH, Song BK, Lee SH (2015) Recent advances in development of biomass pretreatment technologies used in biorefinery for the production of bio-based fuels, chemicals and polymers. Korean J Chem Eng 32:1945–1959

    CAS  Google Scholar 

  • Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Environ Microbiol 81:459–464

    CAS  Google Scholar 

  • Park SJ, Kim EY, Noh W, Park HM, Oh YH, Lee SH (2013) Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Metab Eng 16:42–47

    CAS  PubMed  Google Scholar 

  • Park SJ, Oh YH, Noh W, Kim HY, Shin JH, Lee EG (2014) High-level conversion of l-lysine into 5-aminovalerate that can be used for nylon 6,5 synthesis. Biotechnol J 9:1322–1328

    CAS  PubMed  Google Scholar 

  • Pukin AV, Boeriu CG, Scott EL, Sanders JPM, Franssen MCR (2010) An efficient enzymatic synthesis of 5-aminovaleric acid. J Mol Catal B Enzym 65(1–4):58–62

    CAS  Google Scholar 

  • Qian ZG, Xia XX, Lee SY (2009) Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine. Biotechnol Bioeng 104:651–662

    CAS  PubMed  Google Scholar 

  • Revelles O, Espinosa UM, Molin S, Ramos JL (2004) The davDT operon of Pseudomonas putida, involved in lysine catabolism, is induced in response to the pathway intermediate delta-aminovaleric acid. J Bacteriol 186:3439–3446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Revelles O, Espinosa UM, Fuhrer T, Sauer U (2005) Multiple and interconnected pathways for L-lysine catabolism in Pseudomonas putida KT2440. J Bacteriol 187:7500–7510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez L, Aguirrezabalaga I, Allende N, Braña AF, Méndez C (2002) Engineering deoxysugar biosynthetic pathways from antibiotic-producing microorganisms: a tool to produce novel glycosylated bioactive compounds. Chem Biol 9:721–729

    CAS  PubMed  Google Scholar 

  • Schneider J, Wendisch VF (2010) Putrescine production by engineered Corynebacterium glutamicum. Appl Environ Microbiol 8:859–868

    Google Scholar 

  • Schneider J, Wendisch VF (2011) Biotechnological production of polyamines by Bacteria: recent achievements and future perspectives. Appl Environ Microbiol 91:17–30

    CAS  Google Scholar 

  • Steinbuchel A (2005) Non-biodegradable biopolymers from renewable resources: perspectives and impacts. Curr Opin Biotechnol 16:607–613

    PubMed  Google Scholar 

  • Tani Y, Miyake R, Yukami R, Dekishima Y, China H (2015) Functional expression of L-lysine α-oxidase from Scomber japonicus in Escherichia coli for one-pot synthesis of L-pipecolic acid from DL-lysine. Appl Microbiol Biotechnol 99:1–10

    Google Scholar 

  • Turk SC, Kloosterman WP, Ninaber DK, Kolen KP, Knutova J (2016) Metabolic engineering towards sustainable production of Nylon-6. ACS Synth Biol 5:65–73

    CAS  PubMed  Google Scholar 

  • Vandecasteele JP, Hermann M (1972) Regulation of a catabolic pathway - lysine degradation in Pseudomonas putida. Eur J Biochem 31:80–85

    CAS  PubMed  Google Scholar 

  • Wang J, Qin D, Zhang B, Li Q, Li S, Zhou X, Dong L, Wang D (2015) Fine-tuning of ecaA and pepc gene expression increases succinic acid production in Escherichia coli. Appl Microbiol Biotechnol 99(20):8575–8586

    CAS  PubMed  Google Scholar 

  • Willke T, Vorlop KD (2004) Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Environ Microbiol 66:131–142

    CAS  Google Scholar 

  • Ying HX, He X, Li Y, Chen KQ, Ouyang PK (2014) Optimization of culture conditions for enhanced lysine production using engineered Escherichia coli. Appl Biochem Biotechnol 172:3835–3843

    CAS  PubMed  Google Scholar 

  • Ying H, Wang Z, Wang J, Feng J, Chen K (2015) Enhanced conversion of L -lysine to L -pipecolic acid using a recombinant Escherichia coli containing lysine cyclodeaminase as whole-cell biocatalyst. J Mol Catal B Enzym 117:75–80

    CAS  Google Scholar 

  • Zhang Y, Xiao Z, Zou Q, Fang J, Wang Q, Yang X, Gao N (2017) Ribosome profiling reveals genome-wide cellular translational regulation upon heat stress in Escherichia coli. Genom Proteom Bioinf 15(5):324–330

    Google Scholar 

  • Zhu F, Zhong X, Hu M, Lu L, Deng Z (2014) In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli. Biotechnol Bioeng 111:1396–1405

    CAS  PubMed  Google Scholar 

  • Zhu Q, Chen Q, Song YX, Huang HB, Li J, Ma JY, Li QL, Ju JH (2017) Deciphering the sugar biosynthetic pathway and tailoring steps of nucleoside antibiotic A201A unveils a GDP-l-galactose mutase. Proc Natl Acad Sci U S A 114:4948–4953

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (grant no. 21978027), the Fundamental Research Funds for the Central Universities (project no. 106112017CDJXFLX0014, 2018CDQYHG0010), the Instrument Developing Project of the Chinese Academy of Sciences (grant no. YJKYYQ20170023), the Science and Technology Service Network Initiative of the Chinese Academy of Sciences (grant no. KFJ-STS-ZDTP-065), and the Drug Innovation Major Project (grant no. 2018ZX09711001-006-003).

Author information

Authors and Affiliations

Authors

Contributions

WD and WQ conceived and designed research. XY and WB conducted experiments. ZD and LR contributed new reagents or analytical tools. XY, XX, and SW analyzed data. XY and WD wrote the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Dan Wang or Qinhong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhou, D., Luo, R. et al. Metabolic engineering of Escherichia coli for polyamides monomer δ-valerolactam production from feedstock lysine. Appl Microbiol Biotechnol 104, 9965–9977 (2020). https://doi.org/10.1007/s00253-020-10939-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10939-8

Keywords

Navigation