Paper

Model for deformation of cells from external electric fields at or near resonant frequencies

, , , and

Published 23 October 2020 © 2020 IOP Publishing Ltd
, , Citation Luis Martinez et al 2020 Biomed. Phys. Eng. Express 6 065022 DOI 10.1088/2057-1976/abc05e

2057-1976/6/6/065022

Abstract

This paper presents a numerical model to investigate the deformation of biological cells by applying external electric fields operating at or near cell resonant frequencies. Cells are represented as pseudo solids with high viscosity suspended in liquid media. The electric field source is an atmospheric plasma jet developed inhouse, for which the emitted energy distribution has been measured. Viscoelastic response is resolved in the entire cell structure by solving a deformation matrix assuming an isotropic material with a prescribed modulus of elasticity. To investigate cell deformation at resonant frequencies, one mode of natural cell oscillation is considered in which the cell membrane is made to radially move about its eigenfrequency. An electromagnetic wave source interacts with the cell and induces oscillation and viscoelastic response. The source carries energy in the form of a distribution function which couples a range of oscillating frequencies with electric field amplitudes. Results show that cell response may be increased by the external electric field operating at or near resonance. In the elastic regime, response increases until a steady threshold value, and the structure moves as a damped oscillator. Generally, this response is a function of both frequency and magnitude of the source, with a maximum effect found at resonance. To understand the full effect of the source energy spectrum, the system is solved by considering five frequency-amplitude couplings. Results show that the total solution is a nonlinear combination of the individual solutions. Additionally, sources with different signal phases are simulated to determine the effect of initial conditions on the evolution of the system, and the result suggests that there may be multiple solutions within the same order of magnitude for elastic response and velocity. Cell rupture from electric stress may occur during application given a high energy source.

Export citation and abstract BibTeX RIS

Access this article

The computer you are using is not registered by an institution with a subscription to this article. Please choose one of the options below.

Login

IOPscience login

Find out more about journal subscriptions at your site.

Purchase from

Article Galaxy
CCC RightFind

Purchase this article from our trusted document delivery partners.

Make a recommendation

To gain access to this content, please complete the Recommendation Form and we will follow up with your librarian or Institution on your behalf.

For corporate researchers we can also follow up directly with your R&D manager, or the information management contact at your company. Institutional subscribers have access to the current volume, plus a 10-year back file (where available).

CHORUS: Clearinghouse for the Open Research of the United States. Opens in new tab View accepted manuscript

Public access to this accepted manuscript is provided under the agreement with CHORUS

Please wait… references are loading.
10.1088/2057-1976/abc05e