Skip to main content
Log in

Cauchy Problem for General Time Fractional Diffusion Equation

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In the present work, we consider the Cauchy problem for the time fractional diffusion equation involving the general Caputo-type differential operator proposed by Kochubei [11]. First, the existence, the positivity and the long time behavior of solutions of the diffusion equation without source term are established by using the Fourier analysis technique. Then, based on the representation of the solution of the inhomogenous linear ordinary differential equation with the general Caputo-type operator, the general diffusion equation with source term is studied.

MSC 2010: Primary 35R11; Secondary 35A01, 35B40, 35E15, 45K05

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Chechkin, I.M. Sokolov, J. Klafter, Natural and modified forms of distributed-order fractional diffusion equations. In: Fractional Dynamics: Recent Advances, World Scientific, Singapore (2014), 107–127.

    MATH  Google Scholar 

  2. F. Demengel, G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations. Springer, London (2012).

    Book  Google Scholar 

  3. S.D. Eidelman, A.N. Kochubei, Cauchy problem for fractional diffusion equations. J. Differ. Equ. 199 (2004), 211–255.

    Article  MathSciNet  Google Scholar 

  4. I. Golding, E.C. Cox, Physical nature of bacterial cytoplasm. Phys. Rev. Lett. 96 (2006), # 098102.

    Article  Google Scholar 

  5. H. Jiang, F. Liu, I. Turner, K. Burrage, Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain. J. Math. Anal. Appl. 389 (2012), 1117–1127.

    Article  MathSciNet  Google Scholar 

  6. B. Jin, W. Rundell, A tutorial on inverse problems for anomalous diffusion processes. Inverse Problems 31, No 3 (2015), # 035003.

    Article  MathSciNet  Google Scholar 

  7. J. Kemppainen, J. Siljander, V. Vergara, R. Zacher, Decay estimates for time-fractional and other non-local in time subdiffusion equations in d. Math. Ann. 366, No 3 (2016), 941–979.

    Article  MathSciNet  Google Scholar 

  8. J. Kemppainen, J. Siljander, V. Vergara, R. Zacher, Representation of solutions and large-time behavior for fully nonlocal diffusion equations. J. Differ. Equ. 263 (2017), 149–201.

    Article  MathSciNet  Google Scholar 

  9. G.R. Kneller, Communication: A scaling approach to anomalous diffusion. J. Chem. Phys. 141 (2014), # 041105.

    Article  Google Scholar 

  10. A.N. Kochubei, Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340 (2008), 252–281.

    Article  MathSciNet  Google Scholar 

  11. A.N. Kochubei, General fractional calculus, evolution equations, and renewal processes. Integr. Equa. Operator Theory 71 (2011), 583–600.

    Article  MathSciNet  Google Scholar 

  12. Z. Li, M. Yamamoto, Uniqueness for inverse problems of determining orders of multi-term time-fractional derivatives of diffusion equation. Appl. Anal. 94 (2015), 570–579.

    Article  MathSciNet  Google Scholar 

  13. Y. Liu, Strong maximum principle for multi-term time-fractional diffusion equations and its application to an inverse source problem. Comput. Math. Appl. 73 (2017), 96–108.

    Article  MathSciNet  Google Scholar 

  14. Y. Luchko, Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Comput. Math. Appl. 59 (2010), 1766–1772.

    Article  MathSciNet  Google Scholar 

  15. Y. Luchko, M. Yamamoto, General time-fractional diffusion equation: some uniqueness and existence results for the initial-boundary-value problems. Fract. Calc. Appl. Anal. 19, No 3 (2016), 676–695; DOI: 10.1515/fca-2016-0036; https://www.degruyter.com/view/journals/fca/19/3/fca.19.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  16. Y. Luchko, M. Yamamoto, On the maximum principle for a time-fractional diffusion equation. Fract. Calc. Appl. Anal. 20, No 5 (2017), 1131–1145; DOI: 10.1515/fca-2017-0060; https://www.degruyter.com/view/journals/fca/20/5/fca.20.issue-5.xml.

    Article  MathSciNet  Google Scholar 

  17. F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9, No 6 (1996), 23–28.

    Article  MathSciNet  Google Scholar 

  18. J. Prüss, Evolutionary Integral Equations and Applications. Birkhäuser Verlag, Basel (1993).

    Book  Google Scholar 

  19. M. Reed, B. Simon, Methods of Modern Mathematical Physics: II Fourier Analysis, Self-Adjointness. Academic Press Inc., London (1975).

    MATH  Google Scholar 

  20. T. Sandev, R. Metzler, A. Chechkin, From continuous time random walks to the generalized diffusion equation. Fract. Calc. Appl. Anal. 21, No 1 (2018), 10–28; DOI: 10.1515/fca-2018-0002; https://www.degruyter.com/view/journals/fca/21/1/fca.21.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  21. R.L. Schilling, R. Song, Z. Vondraček, Bernstein Functions. Theory and Applications. De Gruyter, Berlin (2012).

    Book  Google Scholar 

  22. C. Sin, L. Zheng, Existence and uniqueness of global solutions of Caputo-type fractional differential equations. Fract. Calc. Appl. Anal. 19, No 3 (2016), 765–774; DOI: 10.1515/fca-2016-0040; https://www.degruyter.com/view/journals/fca/19/3/fca.19.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  23. C. Sin, Well-posedness of general Caputo-type fractional differential equations, Fract. Calc. Appl. Anal. 21, No 3 (2018), 819–832; DOI: 10.1515/fca-2018-0043; https://www.degruyter.com/view/journals/fca/21/3/fca.21.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  24. C. Sin, Diffusion equations with general nonlocal time and space derivatives. Comput. Math. Appl. 78 (2019), 3268–3284.

    Article  MathSciNet  Google Scholar 

  25. C. Sin, Couette flow of viscoelastic fluid with constitutive relation involving general Caputo-type fractional derivative. Math. Meth. Appl. Sci. 43, (2020), 2090–2105.

    Article  MathSciNet  Google Scholar 

  26. S. Stachura, G.R. Kneller, Anomalous lateral diffusion in lipid bilayers observed by molecular dynamics simulations with atomistic and coarse-grained force fields. Mol. Simul. 40 (2014), 245–250.

    Article  Google Scholar 

  27. V. Tejedor, O. Benichou, R. Voituriez, R. Jungmann, F. Simmel, C. Selhuber-Unkel, L.B. Oddershede, R. Metzler, Quantitative analysis of single particle trajectories: Mean maximal excursion method. Biophys. J. 98 (2010), # 1364.

    Article  Google Scholar 

  28. S.C. Weber, A.J. Spakowitz, J.A. Theriot, Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. Phys. Rev. Lett. 104 (2010), # 238102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Sik Sin.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sin, CS. Cauchy Problem for General Time Fractional Diffusion Equation. Fract Calc Appl Anal 23, 1545–1559 (2020). https://doi.org/10.1515/fca-2020-0077

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0077

Keywords

Navigation