Skip to main content
Log in

Approximate Controllability for Stochastic Fractional Hemivariational Inequalities of Degenerate Type

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This paper is mainly concerned with stochastic fractional hemivariational inequalities of degenerate (or Sobolev) type in Caputo and Riemann-Liouville derivatives with order (1, 2), respectively. Based upon some properties of fractional resolvent family and generalized directional derivative of a locally Lipschitz function, some sufficient conditions are established for the existence and approximate controllability of the aforementioned systems. Particularly, the uniform boundedness for some nonlinear terms, the existence and compactness of certain inverse operator are not necessarily needed in obtained approximate controllability results.

MSC 2010: Primary 93B05; Secondary 34A08, 93E03

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Abbas, M. Banerjee, S. Momani, Dynamical analysis of a fractional order modified logistic model. Comp. Math. Appl. 62 (2011), 1098–1104.

    Article  MathSciNet  Google Scholar 

  2. S. Abbas, M. Benchohra, G.M. N’Guérékata, Topics in Fractional Differential Equations. Springer, New York (2012).

    Book  Google Scholar 

  3. A. Benchaabane, R. Sakthivel, Sobolev-type fractional stochastic differential equations with non-Lipschitz coefficients. J. Comput. Appl. Math. 312 (2017), 65–73.

    Article  MathSciNet  Google Scholar 

  4. H.M. Ahmed, Sobolev-type fractional stochastic integrodifferential equations with nonlocal conditions in Hilbert space. J. Theor. Probab. 30 (2017), 771–783.

    Article  MathSciNet  Google Scholar 

  5. Y.K. Chang, A. Pereira, R. Ponce, Approximate controllability for fractional differential equations of Sobolev type via properties on resolvent operators. Fract. Calc. Appl. Anal. 20, No 4, (2017), 963–987; DOI: 10.1515/fca-2017-0050; https://www.degruyter.com/view/journals/fca/20/4/fca.20.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  6. P. Chen, X. Zhang, Y. Li, Existence and approxiamte controllability of fractional evolution equations with nonlocal conditions via resolvent operators. Fract. Calc. Appl. Anal. 23, No 1, (2020), 268–291; DOI: 10.1515/fca-2020-0011; https://www.degruyter.com/view/journals/fca/23/1/fca.23.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  7. F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley, New York (1983).

    MATH  Google Scholar 

  8. A. Debbouche, J.J. Nieto, Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls. Appl. Math. Comput. 245 (2014), 74–85.

    MathSciNet  MATH  Google Scholar 

  9. A. Debbouche, D.F.M. Torres, Sobolev type fractional dynamic equations and optimal multi-integral controls with fractional nonlocal conditions. Fract. Calc. Appl. Anal. 18, No 1, (2015), 95–121; DOI: 10.1515/fca-2015-0007; https://www.degruyter.com/view/journals/fca/18/1/fca.18.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  10. A. Favini, A. Yagi, Degenerate Differential Equations in Banach Spaces. Dekker, New York (1999).

    MATH  Google Scholar 

  11. M. Kerboua, A. Debbouche, D. Baleanu, Approximate controllability of Sobolev type fractional stochastic nonlocal nonlinear differential equations in Hilbert spaces. Electron. J. Qual. Theory Differ. Equ. 58 (2014), 1–16.

    Article  MathSciNet  Google Scholar 

  12. A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differental Equations. Elsevier Science B.V., Amsterdam (2006).

    MATH  Google Scholar 

  13. J. Lightbourne, S. Rankin, A partial functional differential equation of Sobolev type. J. Math. Anal. Appl. 93 (1983), 328–337.

    Article  MathSciNet  Google Scholar 

  14. L. Lu, Z. Liu, Existence and controllablity results for stochastic fractional evolution hemivariational inequalities. Appl. Math. Comput. 268 (2015), 1164–1176.

    MathSciNet  MATH  Google Scholar 

  15. L. Lu, Z. Liu, W. Jiang, J. Luo, Solvability and optimal controls for semilinear fractional evolution hemivariational inequalities. Math. Methods Appl. Sci. 39 (2016), 5452–5464.

    Article  MathSciNet  Google Scholar 

  16. Q. Lü, E. Zuazua, On the lack of controllability of fractional in time ODE and PDE. Math. Control Signals Systems 28, No 2 (2016), Art. 10, 21 pp.

    Google Scholar 

  17. N.I. Mahmudov, Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces. SIAM J. Control Optim. 42 (2003), 1604–1622.

    Article  MathSciNet  Google Scholar 

  18. N.I. Mahmudov, Finte-approximate controllability of fractional evolution equations: Variational approach. Fract. Calc. Appl. Anal. 21, No 4, (2018), 919–936; DOI: 10.1515/fca-2018-0050; https://www.degruyter.com/view/journals/fca/21/4/fca.21.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  19. L. Mahto, S. Abbas, Approximate controllability and optimal control of impulsive fractional semilinear delay differential equations with non-local conditions. J. Abstr. Differ. Equ. Appl. 4 (2013), 44–59.

    MathSciNet  MATH  Google Scholar 

  20. S. Migórski, A. Ochal, M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems. Springer, New York (2013).

    Book  Google Scholar 

  21. D. Motreanu, V.V. Motreanu, N.S. Papageorgiou, Positive solutions and multiple solutions at non-resonance, resonance and near resonance for hemivariational inequalities with p-Laplacian. Trans. Amer. Math. Soc. 360 (2008), 2527–2545.

    Article  MathSciNet  Google Scholar 

  22. P.D. Panagiotopoulos, Nonconvex superpotentials in sense of F. H. Clarke and applications. Mech. Res. Comm. 8 (1981), 335–340.

    Article  MathSciNet  Google Scholar 

  23. P.D. Panagiotopoulos, Hemivariational Inequalities: Applications in Mechanics and Engineering. Springer, Berlin (1993).

    Book  Google Scholar 

  24. R. Ponce, Existence of mild solution to nonlocal fractional Cauchy problems via compactness. Abstr. Appl. Anal. 2016 (2016), Article ID 4567092, 15 pages.

    Article  MathSciNet  Google Scholar 

  25. G.D. Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambrige (2014).

    Book  Google Scholar 

  26. C. Rajivganthi, P. Muthukumar, B.G. Priya, Approximate controllability of fractional stochastic integro-differential equations with infinite delay of order 1 < α < 2. IMA J. Math. Control Infor. 33 (2016), 685–699.

    Article  MathSciNet  Google Scholar 

  27. R. Sakthivel, R. Ganesh, S.M. Anthoni, Approximate controllability of fractional nonlinear differential inclusions. Appl. Math. Comput. 225 (2013), 708–717.

    MathSciNet  MATH  Google Scholar 

  28. R. Sakthivel, Y. Ren, A. Debbouche, N.I. Mahmudov, Approximate controllability of fractional stochastic differential inclusions with nonlocal conditions. Appl. Anal. 95 (2016), 2361–2382.

    Article  MathSciNet  Google Scholar 

  29. L. Shu, X.B. Shu, J. Mao, Approximate controllablity and existence of mild solutions for Riemann-Liouville fractional stochastic evolution equations with nonlocal condition of order 1 < α < 2. Fract. Calc. Appl. Anal. 22, No 4, (2019), 1086–1112; DOI: 10.1515/fca-2019-0057; https://www.degruyter.com/view/journals/fca/22/4/fca.22.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  30. M. Sofonea, Y. Xiao, Fully history-dependent quasivariational inequalities in contact mechanics. Appl. Anal. 95 (2016), 2464–2484.

    Article  MathSciNet  Google Scholar 

  31. X. Xiao, N. Huang, J. Lu, A system of time-dependent hemivariational inequalities with Volterra integral terms. J. Optim. Theory Appl. 165 (2015), 837–853.

    Article  MathSciNet  Google Scholar 

  32. Y. Xiao, X. Yang, N. Huang, Some equivalence results for well-posedness of hemivariational inequalities. J. Global Optim. 61 (2015), 789–802.

    Article  MathSciNet  Google Scholar 

  33. M. Yang, Q.R. Wang, Approximate controllability of Hilfer fractional differential inclusions with nonlocal conditions. Math. Methods Appl. Sci. 40 (2017), 1126–1138.

    Article  MathSciNet  Google Scholar 

  34. Y. Zhou, Fractional Evolution Equations and Inclusion: Analysis and Control. Elsever, New York (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yatian Pei.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, Y., Chang, YK. Approximate Controllability for Stochastic Fractional Hemivariational Inequalities of Degenerate Type. Fract Calc Appl Anal 23, 1506–1531 (2020). https://doi.org/10.1515/fca-2020-0075

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0075

Keywords

Navigation