Skip to main content
Log in

Analysis of Fractional Integro-Differential Equations with Nonlocal Erdélyi-Kober Type Integral Boundary Conditions

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this article, we study the existence and uniqueness of solutions for nonlinear fractional integro-differential equations with nonlocal Erdélyi-Kober type integral boundary conditions. The existence results are based on Krasnoselskii’s and Schaefer’s fixed point theorems, whereas the uniqueness result is based on the contraction mapping principle. Examples illustrating the applicability of our main results are also constructed.

MSC 2010: Primary 34A08; Secondary 34A12, 34A60

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Ahmad, S.K. Ntouyas, J. Tariboon, A. Alsaedi, Caputo type fractional differential equations with nonlocal Riemann-Liouville and Erdélyi-Kober type integral boundary conditions. Filomat 31, No 14 (2017), 4515–4529; DOI: 10.2298/FIL1714515A.

    Article  MathSciNet  Google Scholar 

  2. B. Ahmad, S.K. Ntouyas, J. Tariboon, A. Alsaedi, A study of nonlinear fractional-order boundary value problem with nonlocal Erdélyi-Kober and generalized Riemann-Liouville type integral boundary conditions. Math. Model. Anal. 22, No 2 (2017), 121–139; DOI: 10.3846/13926292.2017.1274920.

    Article  MathSciNet  Google Scholar 

  3. M. Concezzi, R. Garra, R. Spigler, Fractional relaxation and fractional oscillation models involving Erdélyi-Kober integrals. Fract. Calc. Appl. Anal. 18, No 5 (2015), 1212–1231; DOI: 10.1515/fca-2015-0070; https://www.degruyter.com/view/journals/fca/18/5/fca.18.issue-5.xml.

    Article  MathSciNet  Google Scholar 

  4. P. Duraisamy, T. Nandha Gopal, Existence results for fractional delay integro-differential equations with multi-point boundary conditions. Malaya J. of Mathematik 7, No 1 (2019), 96–103; DOI: 10.26637/MJM0701/0019.

    Article  MathSciNet  Google Scholar 

  5. P. Duraisamy, S. Hemalatha, P. Manimekalai, T. Nandha Gopal, Some results on fractional integro-differential equations with Riemann-Liouville fractional integral boundary conditions. J. Phys. Conf. Ser. 1139, No 1 (2018), # 012015; DOI: 10.1088/1742-6596/1139/1/012015.

    Google Scholar 

  6. A. Erdélyi, H. Kober, Some remarks on Hankel transforms. Quart. J. Math. 11, No 1 (1940), 212–221; DOI: 10.1093/qmath/os-11.1.212.

    Article  MathSciNet  Google Scholar 

  7. L.A-M. Hanna, M. Al-Kandari, Yu. Luchko, Operational method for solving fractional differential equations with the left-and right-hand sided Erdélyi-Kober fractional derivatives. Fract. Calc. Appl. Anal. 23, No 1 (2020), 103–125; DOI: 10.1515/fca-2020-0004; https://www.degruyter.com/view/journals/fca/23/1/fca.23.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  8. Sh.T. Karimov, Multidimensional generalized Erdélyi-Kober operator and its application to solving cauchy problems for differential equations with singular coefficients. Fract. Calc. Appl. Anal. 18, No 4 (2015), 845–861; DOI: 10.1515/fca-2015-0051; https://www.degruyter.com/view/journals/fca/18/4/fca.18.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  9. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204, Amsterdam (2006).

  10. H. Kober, On fractional integrals and derivatives. Quart. J. Math. 11, No 1 (1940), 193–211; DOI: 10.1093/qmath/os-11.1.193.

    Article  MathSciNet  Google Scholar 

  11. V. Kiryakova, Generalized Fractional Calculus and Applications. Longman, Harlow & J. Wiley, N. York (1994).

    MATH  Google Scholar 

  12. V. Kiryakova, Generalized fractional calculus operators with special functions. In: A. Kochubei, Yu. Luchko (Eds.), Handbook of Fractional Calculus with Applications Volume 1: Basic Theory, Ch. 4, De Gruyter, Berlin (2019), 87–110; DOI: 10.1515/9783110571622-004.

    Google Scholar 

  13. V. Kiryakova, Yu. Luchko, Riemann-Liouville and Caputo type multiple Erdélyi-Kober operators. Cent. Eur. J. Phys. 11, No 10 (2013), 1314–1336; DOI: 10.2478/s11534-013-0217-1.

    Google Scholar 

  14. V. Kiryakova, Yu. Luchko, Multiple Erdélyi-Kober integrals andderivatives as operators of generalized fractional calculus. In: A. Kochubei, Yu. Luchko (Eds.), Handbook of Fractional Calculus with Applications. Volume 1: Basic Theory, Ch. 6, De Gruyter, Berlin (2019), 127–158; DOI: 10.1515/9783110571622-006.

    Google Scholar 

  15. G. Pagnini, Erdélyi-Kober fractional diffusion. Fract. Calc. Appl. Anal. 15, No 1 (2012), 117–127; DOI: 10.2478/s13540-012-0008-1; https://www.degruyter.com/view/journals/fca/15/4/fca.15.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  16. D.R. Smart, Fixed Point Theorems. Cambridge Univ. Press (1980).

    MATH  Google Scholar 

  17. M. Subramanian, D. Baleanu, Stability and existence analysis to a coupled system of Caputo type fractional differential equations with Erdelyi-Kober integral boundary conditions. Appl. Math. Inf. Sci. 14, No 3 (2020), 415–424; DOI: 10.18576/amis/140307.

    Article  MathSciNet  Google Scholar 

  18. P. Thiramanus, S.K. Ntouyas and J. Tariboon, Existence of solutions for Riemann-Liouville fractional differential equations with nonlocal Erdelyi-Kober integral boundary conditions on the half line. Bound. Value Probl. 2015, No 196 (2015), 1–15; DOI: 10.1186/s13661-015-0454-x.

    MathSciNet  MATH  Google Scholar 

  19. N. Thongsalee, S.K. Ntouyas, J. Tariboon, Nonlinear Riemann-Liouville fractional differential equations with nonlocal Erdelyi-Kober fractional integral conditions. Fract. Calc. Appl. Anal. 19, No 2 (2016), 480–497; DOI: 10.1515/fca-2016-0025; https://www.degruyter.com/view/journals/fca/19/2/fca.19.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  20. Z. Tomovski, R. Garra, Analytic solutions of fractional integro-differential equations of Volterra type with variable coefficients. Fract. Calc. Appl. Anal. 17, No 1 (2013), 38–60; DOI: 10.2478/s13540-014-0154-8; https://www.degruyter.com/view/journals/fca/17/1/fca.17.issue-1.xml.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palanisamy Duraisamy.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duraisamy, P., Nandha Gopal, T. & Subramanian, M. Analysis of Fractional Integro-Differential Equations with Nonlocal Erdélyi-Kober Type Integral Boundary Conditions. Fract Calc Appl Anal 23, 1401–1415 (2020). https://doi.org/10.1515/fca-2020-0069

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0069

Keywords

Navigation