Skip to main content
Log in

Two High-Order Time Discretization Schemes for Subdiffusion Problems with Nonsmooth Data

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Two new high-order time discretization schemes for solving subdiffusion problems with nonsmooth data are developed based on the corrections of the existing time discretization schemes in literature. Without the corrections, the schemes have only a first order of accuracy for both smooth and nonsmooth data. After correcting some starting steps and some weights of the schemes, the optimal convergence orders O(k3-α) and O(k4-α) with 0 > α > 1 can be restored for any fixed time t for both smooth and nonsmooth data, respectively. The error estimates for these two new high-order schemes are proved by using Laplace transform method for both homogeneous and inhomogeneous problem. Numerical examples are given to show that the numerical results are consistent with the theoretical results.

MSC 2010: Primary 65M06; Secondary 65M12, 65M15, 26A33, 35R11

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Bazhlekova, B. Jin, R. Lazarov and Z. Zhou, An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid. Numer. Math. 131 (2015), 1–31.

    Article  MathSciNet  Google Scholar 

  2. J. Cao, C. Li, and Y. Chen, High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equation (II). Fract. Calc. Appl. Anal. 18, No 3 (2015), 735–761; DOI: 10.1515/fca-2015-0045; https://www.degruyter.com/view/journals/fca/18/3/fca.18.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  3. F. Chen, Q. Xu, and J.S. Hesthaven, A multi-domain spectral method for time-fractional differential equations. J. Comput. Phys. 293 (2015), 157–172.

    Article  MathSciNet  Google Scholar 

  4. S. Chen, J. Shen, and L.-L. Wang, Generalized Jacobi functions and their applications to fractional differential equations. Math. Comp. 85 (2016), 1603–1638.

    Article  MathSciNet  Google Scholar 

  5. X. Chen, F. Zeng, and G.E. Karniadakis, A tunable finite difference method for fractional differential equations with non-smooth solutions. Comput. Methods Appl. Mech. Engrg. 318 (2017), 193–214.

    Article  MathSciNet  Google Scholar 

  6. W. Deng, J.S. Hesthaven, Local discontinuous Galerkin methods for fractional ordinary differential equations. BIT Numer. Math. 55 (2015), 967–985.

    Article  MathSciNet  Google Scholar 

  7. P. Flajolet, Singularity analysis and asymptotics of Bernoulli sums. Theoret. Comput. Sci. 215 (1999), 371–381.

    Article  MathSciNet  Google Scholar 

  8. N.J. Ford, Y. Yan, An approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data. Fract. Calc. Appl. Anal. 20, No 5 (2017), 1076–1105; DOI: 10.1515/fca-2017-0058; https://www.degruyter.com/view/journals/fca/20/5/fca.20.issue-5.xml.

    Article  MathSciNet  Google Scholar 

  9. G.-H. Gao, Z.-Z. Sun and H.-W. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259 (2014), 33–50.

    Article  MathSciNet  Google Scholar 

  10. B. Jin, R. Lazarov and Z. Zhou, An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. of Numer. Anal. 36 (2016), 197–221.

    MathSciNet  MATH  Google Scholar 

  11. B. Jin, B. Li, and Z. Zhou, An analysis of the Crank-Nicolson method for subdiffusion. IMA J. of Numer. Anal. 38 (2018), 518–541.

    Article  MathSciNet  Google Scholar 

  12. B. Jin, B. Li, and Z. Zhou, Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39 (2017), A3129–A3152.

    Article  MathSciNet  Google Scholar 

  13. C. Li, H. Ding, Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl. Math. Model. 38 (2014), 3802–3821.

    Article  MathSciNet  Google Scholar 

  14. Z. Li, Z. Liang, and Y. Yan, High-order numerical methods for solving time fractional partial differential equations. J. Sci. Comput. 71 (2017), 785–803.

    Article  MathSciNet  Google Scholar 

  15. Z. Li, Y. Yan, Error estimates of high-order numerical methods for solving time fractional partial differential equations. Fract. Calc. Appl. Anal. 21, No 3 (2018), 746–774; DOI: 10.1515/fca-2018-0039; https://www.degruyter.com/view/journals/fca/21/3/fca.21.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  16. C. Lubich, Convolution quadrature and discretized operational calculus, I. Numer. Math. 52 (1988), 129–145.

    Article  MathSciNet  Google Scholar 

  17. Ch. Lubich, I.H. Sloan and V. Thomée, Nonsmooth data error estimate for approximations of an evolution equation with a positive-type memory term. Math. Comp. 65 (1996), 1–17.

    Article  MathSciNet  Google Scholar 

  18. C. Lv, C. Xu, Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38 (2016), A2699–A2724.

    Article  MathSciNet  Google Scholar 

  19. W. McLean, K. Mustapha, Time-stepping error bounds for fractional diffusion problems with non-smooth initial data. J. Comput. Phys. 293 (2015), 201–217.

    Article  MathSciNet  Google Scholar 

  20. K. Mustapha, Time-stepping discontinuous Galerkin methods for fractional diffusion problems. Numer. Math. 130 (2015), 497–516.

    Article  MathSciNet  Google Scholar 

  21. K. Mustapha, W. McLean, Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation. IMA J. of Numer. Anal. 32 (2012), 906–925.

    Article  MathSciNet  Google Scholar 

  22. M. Stynes, Too much regularity may force too much uniqueness. Fract. Calc. Appl. Anal. 19, No 6 (2016), 1554–1562; DOI: 10.1515/fca-2016-0080; https://www.degruyter.com/view/journals/fca/19/6/fca.19.issue-6.xml.

    Article  MathSciNet  Google Scholar 

  23. M. Stynes, E. O’riordan and J.L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55 (2017), 1057–1079.

    Article  MathSciNet  Google Scholar 

  24. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (2007).

    MATH  Google Scholar 

  25. Y. Xing, Y. Yan, A higher order numerical method for time fractional partial differential equations with nonsmooth data. J. Comput. Phys. 357 (2018), 305–323.

    Article  MathSciNet  Google Scholar 

  26. D. Wood, The Computation of Polylogarithms, Technical Report 15-92. University of Kent, Computing Laboratory, Canterbury, UK (1992), http://www.cs.kent.ac.uk/pubs/1992/110.

    Google Scholar 

  27. Y. Yan, M. Khan and N.J. Ford, An analysis of the modified scheme for the time-fractional partial differential equations with nonsmooth data. SIAM J. on Numerical Analysis 56 (2018), 210–227.

    Article  MathSciNet  Google Scholar 

  28. Y. Yan, K. Pal and N.J. Ford, Higher order numerical methods for solving fractional differential equations. BIT Numer. Math. 54 (2014), 555–584.

    Article  MathSciNet  Google Scholar 

  29. Y. Yang, Y. Yan, and N.J. Ford, Some time stepping methods for fractional diffusion problems with nonsmooth data. Comput. Methods in Appl. Math. 18 (2018), 129–146.

    Article  MathSciNet  Google Scholar 

  30. M. Zayernouri, M. Ainsworth, and G.E. Karniadakis, A unified Petrov-Galerkin spectral method for fractional PDEs. Comput. Methods Appl. Mech. Engrg. 283 (2015), 1545–1569.

    Article  MathSciNet  Google Scholar 

  31. M. Zayernouri, G.E. Karniadakis, Fractional spectral collocation method. SIAM J. Sci. Comput. 36 (2014), A40–A62.

  32. F. Zeng, C. Li, F. Liu and I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35 (2013), A2976–A3000.

  33. F. Zeng, Z. Zhang, and G.E. Karniadakis, Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions. Comput. Methods Appl. Mech. Engrg. 327 (2017), 478–502.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyong Wang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yan, Y. & Yang, Y. Two High-Order Time Discretization Schemes for Subdiffusion Problems with Nonsmooth Data. Fract Calc Appl Anal 23, 1349–1380 (2020). https://doi.org/10.1515/fca-2020-0067

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0067

Keywords

Navigation