Skip to main content
Log in

Interleukin-8 Receptors CXCR1 and CXCR2 Are Not Expressed by Endothelial Colony-forming Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Endothelial colony-forming cells (ECFCs) are human vasculogenic cells described as potential cell therapy product and good candidates for being a vascular liquid biopsy. Since interleukin-8 (IL-8) is a main actor in senescence, its ability to interact with ECFCs has been explored. However, expression of CXCR1 and CXCR2, the two cellular receptors for IL-8, by ECFCs remain controversial as several teams published contradictory reports. Using complementary technical approaches, we have investigated the presence of these receptors on ECFCs isolated from cord blood. First, CXCR1 and CXCR2 were not detected on several clones of cord blood- endothelial colony-forming cell using different antibodies available, in contrast to well-known positive cells. We then compared the RT-PCR primers used in different papers to search for the presence of CXCR1 and CXCR2 mRNA and found that several primer pairs used could lead to non-specific DNA amplification. Last, we confirmed those results by RNA sequencing. CXCR1 and CXCR2 were not detected in ECFCs in contrary to human-induced pluripotent stem cell-derived endothelial cells (h-iECs). In conclusion, using three different approaches, we confirmed that CXCR1 and CXCR2 were not expressed at mRNA or protein level by ECFCs. Thus, IL-8 secretion by ECFCs, its effects in angiogenesis and their involvement in senescent process need to be reanalyzed according to this absence of CXCR-1 and − 2 in ECFCs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Smadja, D. M. (2019). Vasculogenic stem and progenitor cells in human: future cell therapy product or liquid biopsy for vascular disease. Advances in Experimental Medicine and Biology, 1201, 215–237.

    Article  CAS  Google Scholar 

  2. Paschalaki, K. E., & Randi, A. M. (2018). Recent advances in endothelial colony forming cells toward their use in clinical translation. Frontiers in Medicine (Lausanne), 5, 295.

    Google Scholar 

  3. Smadja, D. M., Bièche, I., Susen, S., et al. (2009). Interleukin 8 is differently expressed and modulated by PAR-1 activation in early and late endothelial progenitor cells. Journal of Cellular and Molecular Medicine, 13(8b), 2534–2546.

    Article  Google Scholar 

  4. Medina, R. J., O’Neill, C. L., O’Doherty, T. M., et al. (2013). Ex vivo expansion of human outgrowth endothelial cells leads to IL-8-mediated replicative senescence and impaired vasoreparative function: IL8 mediates OEC senescence. Stem Cells, 31(8), 1657–1668.

    Article  CAS  Google Scholar 

  5. Blandinières, A., Gendron, N., Bacha, N., et al. (2019). Interleukin-8 release by endothelial colony-forming cells isolated from idiopathic pulmonary fibrosis patients might contribute to their pathogenicity. Angiogenesis, 22(2), 325–339.

    Article  Google Scholar 

  6. Kimura, T., Kohno, H., Matsuoka, Y., et al. (2011). CXCL8 enhances the angiogenic activity of umbilical cord blood-derived outgrowth endothelial cells in vitro. Cell Biology International, 35(3), 201–208.

    Article  CAS  Google Scholar 

  7. Yoon, C.-H., Hur, J., Park, K.-W., et al. (2005). Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation, 112(11), 1618–1627.

    Article  Google Scholar 

  8. Murphy, P. M. (2019). 10 - Chemokines and chemokine receptors [Internet]. In: Rich RR, Fleisher TA, Shearer WT, Schroeder HW, Frew AJ, Weyand CM, editors. Clinical immunology (5th Edition, p. 157–170.e1). London: Content Repository Only! 2019 [cited 2019 Aug 29]. Available from: http://www.sciencedirect.com/science/article/pii/B9780702068966000107.

  9. Murphy, P. M., & Tiffany, H. L. (1991). Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science, 253(5025), 1280–1283.

    Article  CAS  Google Scholar 

  10. Holmes, W. E., Lee, J., Kuang, W. J., Rice, G. C., & Wood, W. I. (1991). Structure and functional expression of a human interleukin-8 receptor. Science, 253(5025), 1278–1280.

    Article  CAS  Google Scholar 

  11. Zlotnik, A., & Yoshie, O. (2000). Chemokines: a new classification system and their role in immunity. Immunity, 12(2), 121–127.

    Article  CAS  Google Scholar 

  12. Petzelbauer, P., Watson, C. A., Pfau, S. E., & Pober, J. S. (1995). IL-8 and angiogenesis: evidence that human endothelial cells lack receptors and do not respond to IL-8 in vitro. Cytokine, 7(3), 267–272.

    Article  CAS  Google Scholar 

  13. Murdoch, C., Monk, P. N., & Finn, A. (1999). Cxc chemokine receptor expression on human endothelial cells. Cytokine, 11(9), 704–712.

    Article  CAS  Google Scholar 

  14. Salcedo, R., Resau, J. H., Halverson, D., et al. (2000). Differential expression and responsiveness of chemokine receptors (CXCR1-3) by human microvascular endothelial cells and umbilical vein endothelial cells. FASEB J, 14(13), 2055–2064.

    Article  CAS  Google Scholar 

  15. Menicacci, B., Margheri, F., Laurenzana, A., et al. (2018). Chronic resveratrol treatment reduces the pro-angiogenic effect of human fibroblast “Senescent Associated Secretory Phenotype” (SASP) on endothelial colony forming cells: the role of IL8. The Journals of Gerontology Series A Biological Sciences and Medical Sciences, 74(5), 625–633.

  16. Kwon, Y. W., Heo, S. C., Lee, T. W., et al. (2017). N-acetylated proline-glycine-proline accelerates cutaneous wound healing and neovascularization by human endothelial progenitor cells. Scientific Reports, 7, 43057.

    Article  CAS  Google Scholar 

  17. d’Audigier, C., Cochain, C., Rossi, E., et al. (2015). Thrombin receptor PAR-1 activation on endothelial progenitor cells enhances chemotaxis-associated genes expression and leukocyte recruitment by a COX-2-dependent mechanism. Angiogenesis, 18(3), 347–359.

    Article  Google Scholar 

  18. Dufies, M., Grytsai, O., Ronco, C., et al. (2019). New CXCR1/CXCR2 inhibitors represent an effective treatment for kidney or head and neck cancers sensitive or refractory to reference treatments. Theranostics, 9(18), 5332–5346.

    Article  CAS  Google Scholar 

  19. d’Audigier, C., Susen, S., Blandinieres, A., et al. (2018). Egfl7 represses the vasculogenic potential of human endothelial progenitor cells. Stem Cell Reviews and Reports, 14(1), 82–91.

    Article  Google Scholar 

  20. Rossi, E., Poirault-Chassac, S., BiEChe, I., et al. (2019). Human endothelial colony forming cells express intracellular CD133 that modulates their vasculogenic properties. Stem Cell Reviews and Reports, 15(4), 590–600.

    Article  CAS  Google Scholar 

  21. Nevo, N., Lecourt, S., Bièche, I., et al. (2020). Valproic acid decreases endothelial colony forming cells differentiation and induces endothelial-to-mesenchymal transition-like process. Stem Cell Reviews and Reports, 16(2), 357–368.

    Article  CAS  Google Scholar 

  22. Melero-Martin, J. M., De Obaldia, M. E., Kang, S.-Y., et al. (2008). Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circulation Research, 103(2), 194–202.

    Article  CAS  Google Scholar 

  23. Lin, R.-Z., Moreno-Luna, R., Li, D., Jaminet, S.-C., Greene, A. K., & Melero-Martin, J. M. (2014). Human endothelial colony-forming cells serve as trophic mediators for mesenchymal stem cell engraftment via paracrine signaling. Proceedings of the National Academy of Sciences, 111(28), 10137–42.

    Article  CAS  Google Scholar 

  24. Rossi, E., Sanz-Rodriguez, F., Eleno, N., et al. (2013). Endothelial endoglin is involved in inflammation: role in leukocyte adhesion and transmigration. Blood, 121(2), 403–415.

    Article  CAS  Google Scholar 

  25. Wang, K., Lin, R.-Z., Hong, X., et al. (2020). Robust differentiation of human pluripotent stem cells into endothelial cells via temporal modulation of ETV2 with modified mRNA. Science Advances, 6(30), eaba7606.

    Article  CAS  Google Scholar 

  26. Dobin, A., Davis, C. A., Schlesinger, F., et al. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15–21.

    Article  CAS  Google Scholar 

  27. García-Alcalde, F., Okonechnikov, K., Carbonell, J., et al. (2012). Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics, 28(20), 2678–2679.

    Article  Google Scholar 

  28. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550.

    Article  Google Scholar 

  29. Bustin, S., & Huggett, J. (2017). qPCR primer design revisited. Biomolecular Detection and Quantification  , 14, 19–28.

    Article  CAS  Google Scholar 

  30. Yoshimura, T., Matsushima, K., Tanaka, S., et al. (1987). Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proceedings of the National Academy of Sciences of the United States of America, 84(24), 9233–9237.

    Article  CAS  Google Scholar 

  31. Koch, A. E., Polverini, P. J., Kunkel, S. L., et al. (1992). Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science, 258(5089), 1798–1801.

    Article  CAS  Google Scholar 

  32. Addison, C. L., Daniel, T. O., Burdick, M. D., et al. (2000). The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR + CXC chemokine-induced angiogenic activity. Journal of Immunology, 165(9), 5269–5277.

    Article  CAS  Google Scholar 

  33. Silvestre, J.-S., Smadja, D. M., & Lévy, B. I. (2013). Postischemic revascularization: from cellular and molecular mechanisms to clinical applications. Physiological Reviews, 93(4), 1743–1802.

    Article  CAS  Google Scholar 

  34. Watson, C. A., Camera-Benson, L., Palmer-Crocker, R., & Pober, J. S. (1995). Variability among human umbilical vein endothelial cultures. Science, 268(5209), 447–448.

    Article  CAS  Google Scholar 

  35. Yoder, M. C., Mead, L. E., Prater, D., et al. (2007). Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood, 109(5), 1801–1809.

    Article  CAS  Google Scholar 

  36. Smadja, D. M., Melero-Martin, J. M., Eikenboom, J., Bowman, M., Sabatier, F., & Randi, A. M. (2019). Standardization of methods to quantify and culture endothelial colony-forming cells derived from peripheral blood: Position paper from the International Society on Thrombosis and Haemostasis SSC. Journal of Thrombosis and Haemostasis, 17(7), 1190–1194.

    Article  Google Scholar 

  37. Muñoz-Espín, D., & Serrano, M. (2014). Cellular senescence: from physiology to pathology. Nature Reviews Molecular Cell Biology, 15(7), 482–496.

    Article  Google Scholar 

  38. Li, J.-J., Ma, F.-X., Wang, Y.-W., et al. (2017). Knockdown of IL-8 provoked premature senescence of placenta-derived mesenchymal stem cells. Stem Cells and Development, 26(12), 912–931.

    Article  CAS  Google Scholar 

  39. Shen, X.-H., Xu, S.-J., Jin, C.-Y., Ding, F., Zhou, Y.-C., & Fu, G.-S. (2013). Interleukin-8 prevents oxidative stress-induced human endothelial cell senescence via telomerase activation. International Immunopharmacology, 16(2), 261–267.

    Article  CAS  Google Scholar 

  40. Hampel, B., Fortschegger, K., Ressler, S., et al. (2006). Increased expression of extracellular proteins as a hallmark of human endothelial cell in vitro senescence. Experimental Gerontology, 41(5), 474–481.

    Article  CAS  Google Scholar 

  41. Kiefer, F., & Siekmann, A. F. (2011). The role of chemokines and their receptors in angiogenesis. Cellular and Molecular Life Sciences, 68(17), 2811–2830.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the PROMEX STIFTUNG FUR DIE FORSCHUNG foundation that we deeply thank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Smadja.

Ethics declarations

Conflict of Interest

Authors declare no conflict of interest related to this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 2.07 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blandinières, A., Hong, X., Philippe, A. et al. Interleukin-8 Receptors CXCR1 and CXCR2 Are Not Expressed by Endothelial Colony-forming Cells. Stem Cell Rev and Rep 17, 628–638 (2021). https://doi.org/10.1007/s12015-020-10081-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-10081-y

Keywords

Navigation