Skip to main content
Log in

The Evolution of Coronal Holes over Three Solar Cycles Using the McIntosh Archive

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Using the McIntosh Archive of solar features, we analyze the evolution of coronal holes over more than three solar cycles. We demonstrate that coronal-hole positions and lifetimes change significantly on time scales from months to years, and that the pattern of these changes is clearly linked to the solar-activity cycle. We demonstrate that the lifetimes of low-latitude coronal holes are usually less than one rotation but may extend to almost three years. When plotted over time, the positions of low-latitude coronal holes that remain visible for over one rotation track the sunspot butterfly diagram in terms of their positions on the Sun over a solar cycle. Finally, we confirm that coronal holes do not in general rigidly rotate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Altrock, R.C.: 1997, An ‘extended solar cycle’ as observed in Fe-XIV. Solar Phys. 170, 411. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brown, M.R., Canfield, R.C., Pevtsov, A.A.: 1999, Magnetic Helicity in Space and Laboratory Plasmas, Geophy. Mon. Ser. 111, AGU, Washington.

    Book  Google Scholar 

  • Cranmer, S.R.: 2009, Coronal holes. Liv. Rev. Solar Phys. 6, 2. DOI.

    Article  ADS  Google Scholar 

  • de Toma, G.: 2011, Evolution of coronal holes and implications for high-speed solar wind during the minimum between cycles 23 and 24. Solar Phys. 274, 195. DOI.

    Article  ADS  Google Scholar 

  • Devore, C.R., Sheeley, N.R. Jr., Boris, J.P., Young, T.R.J., Harvey, K.L.: 1985, Simulations of magnetic-flux transport in solar active regions. Solar Phys. 42, 41. DOI.

    Article  ADS  Google Scholar 

  • Gibson, S.E., Zhao, L.: 2012, A porcupine Sun? Implications for the solar wind and Earth. In: Mandrini, C.H., Webb, D.F. (eds.) Comparative Magnetic Minima: Characterizing Quiet Times in the Sun and Stars, IAU Symp. 286, Cambridge University Press, Cambridge, 210. DOI. ADS.

    Chapter  Google Scholar 

  • Gibson, S.E., de Toma, G., Emery, B., Riley, P., Zhao, L., Elsworth, Y., Leamon, R.J., Lei, J., McIntosh, S., Mewaldt, R.A., Thompson, B.J., Webb, D.: 2011, The whole heliosphere interval in the context of a long and structured solar minimum: An overview from Sun to Earth. Solar Phys. 274, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gibson, S.E., Webb, D., Hewins, I.M., McFadden, R.H., Emery, B.A., Denig, W., McIntosh, P.S.: 2017, Beyond sunspots: Studies using the McIntosh Archive of global solar magnetic field patterns. In: Nandy, D., Valio, A., Petit, P. (eds.) Living Around Active Stars, IAU Symp. 328, Cambridge University Press, Cambridge, 93.

    Google Scholar 

  • Golbeva, E.M., Mordvinov, A.V.: 2017, Rearrangements of open magnetic flux and formation of polar coronal holes in cycle 24. Solar Phys. 292, 175. DOI.

    Article  ADS  Google Scholar 

  • Harvey, K.L., Recely, F.: 2002, Polar coronal holes during cycles 22 and 23. Solar Phys. 211, 31. DOI.

    Article  ADS  Google Scholar 

  • Heinemann, S.G., Temmer, M., Hofmeister, S.J., Veronig, A.M., Vennerstrøm, S.: 2018, Three-phase evolution of a coronal hole. I. 360 remote sensing and in situ observations. Astrophys. J. 861, 151. DOI.

    Article  ADS  Google Scholar 

  • Heinemann, S.G., Jerčić, V., Temmer, M., Hofmeister, S.J., Dumbović, M., Vennerstrom, S., Verbanac, G., Veronig, A.M.: 2020, A statistical study of the long-term evolution of coronal hole properties as observed by SDO. Astron. Astrophys. 638, A68. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hofmeister, S.J., Stefan, J., Veronig, A., Reiss, M.A., Temmer, M., Vennerstrom, S., Vrsnak, B., Heber, B.: 2017, Characteristics of low-latitude coronal holes near the maximum of solar cycle 24. Astrophys. J. 835, 268. DOI.

    Article  ADS  Google Scholar 

  • Hofmeister, S.J., Utz, D., Heinemann, S.G., Veronig, A., Temmer, M.: 2019, Photospheric magnetic structure of coronal holes. Astrophys. J. 629, A22. DOI.

    Article  Google Scholar 

  • Howe, R.: 2009, Solar interior rotation and its variation. Liv. Rev. Solar Phys. 6, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hundhausen, A.J.: 1972, Coronal Expansion and Solar, Springer, Berlin. DOI. ADS.

    Book  Google Scholar 

  • Hundhausen, A.J., Hansen, R.T., Hansen, S.F.: 1981, Coronal evolution during the sunspot cycle: Coronal holes observed with the Mauna Loa K-coronameters. J. Geophys. Res. 86, 2079. DOI. ADS.

    Article  ADS  Google Scholar 

  • Insley, J.E., Moore, V., Harrison, R.A.: 1995, The differential rotation of the corona as indicated by coronal holes. Solar Phys. 160, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jiang, J., Hathaway, D.H., Cameron, R.H., Solanki, S.K., Gizon, L., Upton, L.: 2014, Magnetic flux transport at the solar surface. Space Sci. Rev. 186, 491.

    Article  ADS  Google Scholar 

  • Karak, B.B., Jiang, J., Miesch, M.S., Charbonneau, P., Choudhuri, A.R.: 2014, Flux transport dynamos: From kinematics to dynamics. Space Sci. Rev. 186, 561.

    Article  ADS  Google Scholar 

  • Krieger, A.S., Timothy, A.F., Roelof, E.C.: 1973, A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Phys. 29, 505. DOI.

    Article  ADS  Google Scholar 

  • Krista, L.D., McIntosh, S.W., Leamon, R.J.: 2018, The longitudinal evolution of equatorial coronal holes. Astron. J. 155, 153. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lockyer, W.J.S.: 1931, On the relationship between solar prominences and the forms of the corona. Mon. Not. Roy. Astron. Soc. 91, 797. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lowder, C., Qiu, J., Leamon, R.: 2017, Coronal holes and open magnetic flux over cycles 23 and 24. Solar Phys. 292, 18. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mazumder, R., Bhowmik, P., Nandy, D.: 2018, The association of filaments, polarity inversion lines, and coronal hole properties with the sunspot cycle: An analysis of the McIntosh database. Astrophys. J. 868, 52. DOI. ADS.

    Article  ADS  Google Scholar 

  • McIntosh, P.S.: 1979, Annotated Atlas of H-Alpha Synoptic Charts for Solar Cycle 20 (1964-1974) Carrington Solar Rotations 1487-1616, U.S. Dept. Commerce, Boulder, ADS.

    Google Scholar 

  • McIntosh, S.W., Leamon, R.J., Krista, L.D., Title, A.M., Hudson, H.S., Riley, P., Harder, J.W., Kopp, G., Snow, M., Woods, T.N., Kasper, J.C., Stevens, M.L., Ulrich, R.K.: 2015, The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability. Nat. Commun. 6, 6491. DOI. ADS.

    Article  ADS  Google Scholar 

  • Navarro-Peralta, P., Sanchez-Ibarra, A.: 1994, An observational study of coronal hole rotation over the sunspot cycle. Solar Phys. 153, 169. DOI. ADS.

    Article  ADS  Google Scholar 

  • Snodgrass, H.B.: 1983, Magnetic rotation of the solar photosphere. Astrophys. J. 270, 288. DOI. ADS.

    Article  ADS  Google Scholar 

  • Waldmeier, M.: 1957, Die Sonnenkorona, Birckhäuser, Basel.

    Book  Google Scholar 

  • Waldmeier, M.: 1981, Cyclic variations of the polar coronal hole. Solar Phys. 70, 251. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1990, Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726.

    Article  ADS  Google Scholar 

  • Webb, F.D., Davis, J.M., McIntosh, P.S.: 1984, Observations of the reappearance of polar coronal holes and the reversal of the polar magnetic field. Solar Phys. 92, 109. DOI.

    Article  ADS  Google Scholar 

  • Webb, D.F., Gibson, S.E., Hewins, I.M., McFadden, R.H., Emery, B.A., Malanushenko, A., Kuchar, T.A.: 2018, Global solar magnetic field evolution over 4 solar cycles: Use of the McIntosh archive. Front. Astron. Space Sci. 5, 23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wilcox, J.M.: 1968, The interplanetary magnetic field. Solar origin and terrestrial effects. Space Sci. Rev. 8, 258. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Y., Wang, J., Attrill, G.D.R., Harra, L.K., Yang, Z., He, X.: 2007, Coronal magnetic connectivity and EUV dimmings. Solar Phys. 241, 329. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zirker, J.B.: 1977, Coronal holes - an overview. In: Zirker, J.B. (ed.) Coronal Holes and High Speed Wind Streams, Colorado University Press, Boulder, 1. ADS.

    Google Scholar 

Download references

Acknowledgements

We thank Beth Schmidt, Patrick McIntosh’s daughter, who allowed us to use her father’s work, and William Denig who gave us a home for the archive at NCEI. I.M. Hewins and R.H. McFadden thank the HAO for support during their visit and in particular the HAO Coffee and Tea group for all of their assistance. I.M. Hewins, D.F. Webb, R.H. McFadden, B.A. Emery, and T.A. Kuchar were supported by NSF RAPID grant 1540544 and NSF grant 1722727. The National Center for Atmospheric Research is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977. Finally, we thank the reviewer for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian M. Hewins.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hewins, I.M., Gibson, S.E., Webb, D.F. et al. The Evolution of Coronal Holes over Three Solar Cycles Using the McIntosh Archive. Sol Phys 295, 161 (2020). https://doi.org/10.1007/s11207-020-01731-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01731-y

Keywords

Navigation