Skip to main content

Advertisement

Log in

Mechanical Behavior and Strengthening Mechanisms in Precipitation-Strengthened Aluminum Alloy with Gradient Structure Induced by Sliding Friction Treatment

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The flat surfaces of a 7075 aluminum (Al) alloy plate were processed by sliding friction treatment (SFT), which is a technique for surface nanocrystallization of metals and alloys. The aim of this study was to investigate the microstructural evolution, mechanical behavior and strengthening mechanisms in this SFTed precipitation-strengthened Al alloy. The SFT resulted in a gradient structure (GS) with an effective depth of ~ 800 µm, and a nanostructured layer was formed within a depth of ~ 30 µm from the surface. Increasing boundary spacing and decreasing misorientation angle between boundaries were found with increasing depth from the surface, which was accompanied by a decrease in hardness from ~ 2436 MPa in the topmost surface layer to ~ 1568 MPa in the undeformed coarse grain (CG) matrix. Moreover, the GS revealed a prominent precipitate redistribution induced by the SFT. The GS revealed higher strength and especially exhibited a higher work-hardening rate at low strain (ε < 0.026) than the CG, attributed to a novel coupling of dislocations, boundaries and precipitates. Grain boundary strengthening, dislocation strengthening, precipitation strengthening and synergetic strengthening in the GS were quantitatively evaluated based on sufficient discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. [1] W. Sun, Y. Zhu, R. Marceau, L. Wang, Q. Zhang, X. Gao, C. Hutchinson: Science, 2019, vol. 363, pp. 972-75.

    CAS  Google Scholar 

  2. [2] M. Kumar, C. Poletti, H.P. Degischer: Mater. Sci. Eng. A, 2013, vol. 561, pp. 362-70.

    CAS  Google Scholar 

  3. [3] A.J. Ardell: Metall. Trans. A, 1985, vol. 16A, pp. 2131-65.

    CAS  Google Scholar 

  4. [4] A. Deschamps, F. Livet, Y. Bréchet: Acta Mater., 1999, vol. 47(1), pp. 281-92.

    CAS  Google Scholar 

  5. [5] A. Deschamps, Y. Bréchet: Acta Mater., 1999, vol. 47(1), pp. 293-305.

    CAS  Google Scholar 

  6. [6] R. Ferragut, A. Somoza, A. Tolley: Acta Mater., 1999, vol. 47(17), pp. 4355-64.

    CAS  Google Scholar 

  7. [7] L.K. Berg, J. Gjønnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Scheyvers, L.R. Wallenberg: Acta Mater., 2001, vol. 49, pp. 3443-51.

    CAS  Google Scholar 

  8. [8] G. Sha, A. Cerezo: Acta Mater., 2004, vol. 52, pp. 4503-16.

    CAS  Google Scholar 

  9. [9] W. Huo, L. Hou, H. Cui, L. Zhuang, J. Zhang: Mater. Sci. Eng. A, 2014, vol. 618, pp. 244-53.

    CAS  Google Scholar 

  10. [10] Y. Zhang, S. Jin, P.W. Trimby, X. Liao, M.Y. Murashkin, R.Z. Valiev, J. Liu, J.M. Cairney, S.P. Ringer, G. Sha: Acta Mater., 2019, vol. 162, pp. 19-32.

    CAS  Google Scholar 

  11. [11] K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung: Acta Mater., 2014, vol. 62, pp. 141-55.

    CAS  Google Scholar 

  12. [12] K. Ma, T. Hu, H. Yang, T. Topping, A. Yousefiani, E.J. Lavernia, J.M. Schoenung: Acta Mater., 2016, vol. 103, pp. 153-64.

    CAS  Google Scholar 

  13. [13] X. Yin, Y. Pi, J. Zhang, W. Deng: J. Mater. Res., 2018, vol. 33(20), pp. 3449-57.

    CAS  Google Scholar 

  14. [14] K. Lu: Science, 2014, vol. 345, pp. 1455-56.

    CAS  Google Scholar 

  15. [15] K. Lu, J. Lu: Mater. Sci. Eng. A, 2004, vol. 375-377, pp. 38-45.

    Google Scholar 

  16. [16] X. Zhang, N. Hansen, Y. Gao, X. Huang: Acta Mater., 2012, vol. 60, pp. 5933-43.

    CAS  Google Scholar 

  17. [17] S. Bajda, S. Dymek, M. Krzyzanowski, D. Retraint, J. Majta, L. Lisiecki, M. Kwiecień: Mater. Charact., 2018, vol. 145, pp. 250-57.

    CAS  Google Scholar 

  18. [18] J. Ding, Q. Li, J. Li, S. Xue, Z. Fan, H. Wang, X. Zhang: Acta Mater., 2018, vol. 149, pp. 57-67.

    CAS  Google Scholar 

  19. [19] S.Q. Deng, A. Godfrey, W. Liu, N. Hansen: Scr. Mater., 2016, vol. 117, pp. 41-45.

    CAS  Google Scholar 

  20. [20] W. Zhang, Y. Du, W. Huo, J. Hu, J. Lu, X. Zhao, L.C. Zhang, Y. Zhang: Metall. Mater. Trans. A, 2019, vol. 50, pp. 5888-95.

    Google Scholar 

  21. [21] Y. Chen, Y. Yang, Z. Feng, G. Zhao, B. Huang, X. Luo, Y. Zhang, W. Zhang: Mater. Charact., 2017, vol. 123, pp. 189-97.

    CAS  Google Scholar 

  22. [22] W. Zhang, J. Lu, W. Huo, Y. Zhang, Q. Wei: Philos. Mag., 2018, vol. 98, pp. 1576-93.

    CAS  Google Scholar 

  23. [23] C.C. Koch, R.O. Scattergood, K.A. Darling, J.E. Semones: J. Mater. Sci., 2008, vol. 43, pp. 7264-72.

    CAS  Google Scholar 

  24. K. Lu: Nat. Rev. Mater., 2016, vol. 1, 16019.

    CAS  Google Scholar 

  25. [25] H.W. Chang, P.M. Kelly, Y.N. Shi, M.X. Zhang: Mater. Sci. Eng. A, 2011, vol. 530, pp. 304-14.

    CAS  Google Scholar 

  26. B. Yang, Y.T. Zhou, D. Chen, X.L. Ma: Sci. Rep., 2013, vol. 3, 1039.

    CAS  Google Scholar 

  27. [27] W. Huo, J. Hu, H. Cao, Y. Du, W. Zhang, Y. Zhang: J. Alloys Compd., 2019, vol. 781, pp. 680-88.

    CAS  Google Scholar 

  28. [28] D.A. Hughes, N. Hansen: Acta Mater., 1997, vol. 45(9), pp. 3871-86.

    CAS  Google Scholar 

  29. [29] X. Wu, N. Tao, Y. Hong, B. Xu, J. Lu, K. Lu: Acta Mater., 2002, vol. 50, pp. 2075-84.

    CAS  Google Scholar 

  30. [30] C.E. Campbell, L.A. Bendersky, W.J. Boettinger, R. Ivester: Mater. Sci. Eng. A, 2006, vol. 430, pp. 15-26.

    Google Scholar 

  31. [31] E.W. Hart: Acta Metall., 1967, vol. 15, pp. 351-55.

    CAS  Google Scholar 

  32. [32] Y. Chen, Y. Yang, Z. Feng, B. Huang, X. Luo: J. Alloys Compd., 2017, vol. 726, pp. 367-77.

    CAS  Google Scholar 

  33. [33] R.W. Balluffi: Phys. Stat. Sol. A, 1970, vol. 42, pp. 11-34.

    CAS  Google Scholar 

  34. [34] A.M. Brown, M.F. Ashby: Acta Metall., 1980, vol. 28(8), pp. 1085-1101.

    CAS  Google Scholar 

  35. [35] A. Godfrey, D.A. Hughes: Acta Mater., 2000, vol. 48, pp. 1897-1905.

    CAS  Google Scholar 

  36. [36] S. Bahl, S. Suwas, T. Ungàr, K. Chatterjee: Acta Mater., 2017, vol. 122, pp. 138-51.

    CAS  Google Scholar 

  37. [37] Q. Liu, X. Huang, D.J. Lloyd, N. Hansen: Acta Mater., 2002, vol. 50, pp. 3789-3802.

    CAS  Google Scholar 

  38. [38] N. Hansen: Scr. Mater., 2004, vol. 51, pp. 801-6.

    CAS  Google Scholar 

  39. [39] M.F. Ashby: Acta Metall., 1972, vol. 20, pp. 887-97.

    CAS  Google Scholar 

  40. [40] C.Y. Barlow, N. Hansen: Acta Metall., 1989, vol. 37, pp. 1313-20.

    CAS  Google Scholar 

  41. [41] Y. Lin, W. Liu, L. Wang, E.J. Lavernia: Mater. Sci. Eng. A, 2013, vol. 573, pp. 197-204.

    CAS  Google Scholar 

  42. Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, X. Wu, Z. Mi, J. Liu, H. Wang, H. Gao: Nat. Commun., 2014, vol. 5, 3580.

    Google Scholar 

  43. [43] Z.C. Luo, M.X. Huang: Scr. Mater., 2020, vol. 178, pp. 264-68.

    CAS  Google Scholar 

  44. [44] N. Kamikawa, X. Huang, N. Tsuji, N. Hansen: Acta Mater., 2009, vol. 57, pp. 4198-4208.

    CAS  Google Scholar 

  45. [45] N. Hansen, X. Huang: Acta Mater., 1998, vol. 46(5), pp. 1827-36.

    CAS  Google Scholar 

  46. [46] M.F. Ashby: Philos. Mag., 1970, vol. 21, pp. 399-424.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51701163, 51701166 and 51901191) and the Key Research and Development Projects of Shaanxi Province, China (Grant No. 2019GY-199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 15, 2020; accepted September 17, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Huo, W., Xu, J. et al. Mechanical Behavior and Strengthening Mechanisms in Precipitation-Strengthened Aluminum Alloy with Gradient Structure Induced by Sliding Friction Treatment. Metall Mater Trans A 51, 6207–6221 (2020). https://doi.org/10.1007/s11661-020-06038-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06038-y

Navigation