Skip to main content

Advertisement

Log in

Quantitative Evaluation of Hydrogen Effects on Evolutions of Deformation-Induced ε-Martensite and Damage in a High-Mn Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We investigated the effects of hydrogen on ε-martensite-related damage evolution (crack/void initiation and growth) in Fe-Mn-Si-base austenitic steel using tensile tests after gaseous hydrogen charging at 100 MPa. Specifically, we evaluated the quantitative hydrogen effects on ε-martensite fraction and associated damage evolution with different strains and strain rates. Hydrogen charging increased the probability of ε-martensite-related damage initiation and deteriorated micro-damage arrestability, which decreased elongation. The primary factor causing the detrimental hydrogen effects on resistance to damage evolution was the promotion of deformation-induced γ-ε martensitic transformation. An increasing strain rate from 10−4 to 10−2 s−1 suppressed the γ-ε martensitic transformation and correspondingly increased elongation. Interestingly, the ε-martensite fraction near the fracture surface did not change with increasing strain rate, but the area fraction of the brittle-like fracture region decreased. This fact implied that the brittle-like fracture at the low strain rate, which had a longer time for damage growth, was assisted by stress-driven hydrogen diffusion near the crack/void tips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. 1.V.F. Zackay, E.R. Parker, D. Fahr, and R. Busch: Trans. ASM, 1967, vol. 60, pp. 252–59.

    CAS  Google Scholar 

  2. 2.I. Tamura: Met. Sci., 1982, vol. 16, pp. 245–53.

    CAS  Google Scholar 

  3. 3.L. Remy, and A. Pineau: Mat. Sci. Eng., 1977, vol. 28, pp. 99–107.

    CAS  Google Scholar 

  4. 4.K. Sipos, L. Remy, and A. Pineau: Met. Trans. A, 1976, vol. 7, pp. 857–64.

    Google Scholar 

  5. 5.M. Koyama, T. Sawaguchi, and K. Tsuzaki: Mater. Trans., 2015, vol. 56, pp. 819–25.

    CAS  Google Scholar 

  6. 6.O. Grässel, and G. Frommeyer: Mater. Sci. Technol., 1998, vol. 14, pp. 1213–17.

    Google Scholar 

  7. 7.S. Kang, Y.S. Jung, J.H. Jun, and Y.K. Lee: Mater. Sci. Eng. A, 2010, vol. 527, pp. 745–51.

    Google Scholar 

  8. 8.T. Niendorf, F. Rubitschek, H.J. Maier, J. Niendorf, H.A. Richard, and A. Frehn: Mater. Sci. Eng., 2010, vol. 527, pp. 2412–17.

    Google Scholar 

  9. 9.L. Bracke, L. Kestens, and J. Penning: Scripta Mater., 2007, vol. 57, pp. 385–88.

    CAS  Google Scholar 

  10. 10.G.R. Chanani, V.F. Zackay, and E.R. Parker: Metall. Trans., 1971, vol. 2, pp. 133–39.

    CAS  Google Scholar 

  11. 11.T. Kaneko, M. Koyama, T. Fujisawa, and K. Tsuzaki: ISIJ. Int., 2016, vol. 56, pp. 2037–46.

    CAS  Google Scholar 

  12. 12.S. Takaki, T. Furuya, and Y. Tokunaga: ISIJ. Int., 1990, vol. 30, pp. 632–38.

    CAS  Google Scholar 

  13. 13.Z. Li, C.C. Tasan, H. Springer, B. Gault, and D. Raabe: Sci. Rep., 2017, vol. 7, pp. 40704-1–7.

    Google Scholar 

  14. 14.J.B. Seol, J. Jung, Y. Jang, and C. Park: Acta Mater., 2013, vol. 61, pp. 558–78.

    CAS  Google Scholar 

  15. 15.M. Huang, O. Bouaziz, D. Barbier, and S. Allain: J. Mater. Sci., 2011, vol. 46, pp. 7410–14.

    CAS  Google Scholar 

  16. 16.A.E. Pontini, and J.D. Hermida: Scripta Mater., 1997, vol. 37, pp. 1831–37.

    CAS  Google Scholar 

  17. 17.M.B. Whiteman, and A.R. Troiano: Phys. Stat. Sol., 1964, vol. 7, pp. 109–10.

    Google Scholar 

  18. 18.D.P. Abraham, and C.J. Altstetter: Metall. Mater. Trans. A, 1995, vol. 26, pp. 2859–71.

    Google Scholar 

  19. 19.S. Jani, M. Marek, R.F. Hochman, and E.I. Meletis: Metall. Trans. A, 1991, vol. 22, pp. 1453–61.

    Google Scholar 

  20. 20.A.W. Thompson: Mat. Sci. Eng., 1980, vol. 43, pp. 41–46.

    CAS  Google Scholar 

  21. 21.Y. Kuroki, S. Kawano, S. Iikubo, H. Ohtani, M. Koyama, and K. Tsuzaki: Metall. Mater. Trans. A, 2019, vol. 50, pp. 3019–23.

    CAS  Google Scholar 

  22. 22.M. Koyama, N. Terao, and K. Tsuzaki: Mater. Lett., 2019, vol. 249, pp. 197–200.

    CAS  Google Scholar 

  23. 23.E.G. Astafurova, G.G. Zakharova, and H.J. Maier: Scripta Mater., 2010, vol. 63, pp. 1189–92.

    CAS  Google Scholar 

  24. 24.Y.S. Chun, J.S. Kim, K.-T. Park, Y.-K. Lee, C.S. Lee: Mat. Sci. Eng. A, 2012, vol. 533, pp. 87–95.

    CAS  Google Scholar 

  25. 25.S.-M. Lee, I.-J. Park, J.-G. Jung, Y.-K. Lee: Acta Mater., 2016, vol. 103, pp. 264–72.

    CAS  Google Scholar 

  26. 26.M. Koyama, S. Okazaki, T. Sawaguchi, and K. Tsuzaki: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2656–73.

    Google Scholar 

  27. 27.T.C. Chen, S.T. Chen, and L.W. Tsay: Int. J. Hydrog. Energy, 2014, vol. 39, pp. 10293–302.

    CAS  Google Scholar 

  28. 28.M. Koyama, E. Akiyama, Y.K. Lee, D. Raabe, and K. Tsuzaki: Int. J. Hydrog. Energy, 2017, vol. 42, pp. 12706–23.

    CAS  Google Scholar 

  29. 29.K. Tsuzaki, K. Fukuda, M. Koyama, and H. Matsunaga: Scripta Mater., 2016, vol. 113, pp. 6–9.

    CAS  Google Scholar 

  30. 30.H. Otsuka, H. Yamada, T. Maruyama, H. Tanahashi, S. Matsuda, M. Murakami: ISIJ. Int., 1990, vol. 30, pp. 674–9.

    CAS  Google Scholar 

  31. 31.M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, D. Raabe: Acta Mater., 2014, vol. 70, pp. 174–87.

    CAS  Google Scholar 

  32. 32.C.C. Tasan, J.P.M. Hoefnagels, M.G.D. Geers: Acta Mater., 2012, vol. 60, pp. 3581–9.

    CAS  Google Scholar 

  33. 33.M. Koyama, C.C. Tasan, T. Nagashima, E. Akiyama, D. Raabe, K. Tsuzaki: Phil. Mag. Lett., 2016, vol. 96, pp. 9–18.

    CAS  Google Scholar 

  34. 34.Y. Murakami, T. Kanezaki, Y. Mine: Metall. Mater. Trans. A, 2010, vol. 41, pp. 2548-62.

    CAS  Google Scholar 

  35. 35.Y. Ogawa, S. Okazaki, O. Takakuwa, H. Matsunaga: Scripta Mater., 2018, vol. 157, 2018, pp. 95-99.

    CAS  Google Scholar 

  36. 36.M. Koyama, K. Ichii, K. Tsuzaki: Int. J. Hydrog. Energy, 2019, vol. 44, pp. 17163-67.

    CAS  Google Scholar 

  37. 37.K. Wada, J. Yamabe, H. Matsunaga: Materialia, 2019, vol. 8, art. no. 100478.

    Google Scholar 

  38. 38.K. Yamada, M. Koyama, T. Kaneko, K. Tsuzaki, Scripta Mater., 2015, vol. 105, pp. 54-57.

    CAS  Google Scholar 

  39. M. Koyama, C.X. Hao, E. Akiyama, and K. Tsuzaki: Metall. Mater. Trans. A, 2020, vol. 51, pp. 4439–41.

    CAS  Google Scholar 

  40. 40.T. Kumamoto, M. Koyama, K. Sato, K. Tsuzaki: Mater. Trans., 2019, vol. 60, pp. 2368–77.

    CAS  Google Scholar 

  41. 41.T. Kumamoto, M. Koyama, K. Sato, K. Tsuzaki: Eng. Fract. Mech., 2019, vol. 216, art. no. 106513.

    Google Scholar 

  42. 42.M. Vollmer, P. Krooß, C. Segel, A. Weidner, A. Paulsen, J. Frenzel, M. Schaper, G. Eggeler, H.J. Maier, T. Niendorf: J. Alloy. Compd., 2015, vol. 633, pp. 288–95.

    CAS  Google Scholar 

  43. 43.K. Prusik, H. Morawiec, B. Kostrubiec, M. Prewendowski, G. Dercz, K. Ziewiec: Eur. Phys. J. Spec. Top., 2008, vol. 158, pp. 155–59.

    Google Scholar 

  44. 44.H. Li, M. Koyama, T. Sawaguchi, K. Tsuzaki, H. Noguchi: Phil. Mag. Lett., 2015, vol. 95, pp. 303–11.

    CAS  Google Scholar 

  45. 45.M. Koyama, T. Sawaguchi, K. Tsuzaki: Metall. Mater. Trans. A, 2012, vol. 43, pp. 4063–74.

    CAS  Google Scholar 

  46. 46.S. Aoki, K. Kishimoto, N. Takeuchi: Int. J. Fracture, 1992, vol. 55, pp. 363–74.

    Google Scholar 

  47. 47.V. Tvergaard: J. Mech. Phys. Solids, 2004, vol. 52, pp. 2149–66.

    Google Scholar 

  48. 48.Y.A. Du, L. Ismer, J. Rogal, T. Hickel, J. Neugebauer, R. Drautz: Phys. Rev. B, 2011, vol. 84, art. no.. 144121.

    Google Scholar 

  49. 49.M. Yamaguchi, K.-I. Ebihara, M. Itakura, T. Kadoyoshi, T. Suzudo, H. Kaburaki: Metall. Mater. Trans. A, 2011, vol. 42, pp. 330–39.

    CAS  Google Scholar 

  50. 50.M. Koyama, E. Akiyama, K. Tsuzaki, D. Raabe: Acta Mater., 2013, vol. 61, pp. 4607–18.

    CAS  Google Scholar 

  51. 51.A. Sato, K. Soma, T. Mori: Acta Metall., 1982, vol. 30, pp. 1901–07.

    CAS  Google Scholar 

  52. 52.Y.-B. Ju, M. Koyama, T. Sawaguchi, K. Tsuzaki, H. Noguchi: Acta Mater., 2016, vol. 112, pp. 326–36.

    CAS  Google Scholar 

  53. 53.T. Maki: Phase Transformations in Steels, 1st ed. Woodhead Publishing, Cambridge, 2012, pp. 34–58.

    Google Scholar 

  54. 54.J.W. Christian, S. Mahajan: Prog. Mater. Sci., 1995, vol. 39, pp. 1–157.

    Google Scholar 

  55. 55.S. Mahajan, G. Chin: Acta Metall., 1973, vol. 21, pp. 173–79.

    CAS  Google Scholar 

  56. 56.L. Remy: Acta Metall., 1977, vol. 25, pp. 711–14.

    CAS  Google Scholar 

  57. 57.L. Remy: Metall. Trans. A, 1981, vol. 12, pp. 387–408.

    CAS  Google Scholar 

  58. 58.M. Koyama, K. Hirata, Y. Abe, A. Mitsuda, S. Iikubo, K. Tsuzaki: Sci. Rep., 2018, vol. 8, art. no. 16136.

    Google Scholar 

  59. 59.P.J. Ferreira, I.M. Robertson, H.K. Birnbaum: Acta Mater., 1998, vol. 46, pp. 1749–57.

    CAS  Google Scholar 

  60. 60.J. Tien, A.W. Thompson, I.M. Bernstein, R.J. Richards: Metall. Trans. A, 1976, vol. 7, pp. 821–29.

    Google Scholar 

  61. 61.M. Dadfarnia, M.L. Martin, A. Nagao, P. Sofronis, I.M. Robertson: J. Mech. Phys. Solids, 2015, vol. 78, pp. 511–25.

    CAS  Google Scholar 

  62. 62.B. Bal, M. Koyama, G. Gerstein, H.J. Maier, K. Tsuzaki: Int. J. Hydrogen Energy, 2016, vol. 41, pp. 15362–72.

    CAS  Google Scholar 

  63. 63.M. Koyama, Y. Onishi, H. Noguchi: Int. J. Fracture, 2017, vol. 206, pp. 123–30.

    CAS  Google Scholar 

  64. 64.V.K. Verma, M. Koyama, S. Hamada, E. Akiyama: Mater. Sci. Eng. A, 2020, vol. 782, art. no. 139250.

    CAS  Google Scholar 

  65. 65.P. Sofronis, Y. Liang, N. Aravas: Eur. J. Mech. A-Solids, 2001, vol. 20, pp. 857–72.

    Google Scholar 

  66. 66.I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, K.E. Nygren: Metall. Mater. Trans. A, 2015, vol. 46, pp. 2323–41.

    CAS  Google Scholar 

  67. 67.C. Zheng, B. Lv, F. Zhang, Z. Yan, R. Dan, L. Qian: Mater. Sci. Eng. A, 2012, vol. 547, pp. 99–103.

    CAS  Google Scholar 

  68. 68.M. Koyama, E. Akiyama, K. Tsuzaki: Scripta Mater., 2012, vol. 66, pp. 947–50.

    CAS  Google Scholar 

  69. 69.B.A. Kehler, J.R. Scully: Corrosion, 2008, vol. 64, pp. 465–77.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by JSPS KAKENHI (JP16H06365 and JP20H02457).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motomichi Koyama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 6, 2020; accepted September 6, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, C., Koyama, M. & Akiyama, E. Quantitative Evaluation of Hydrogen Effects on Evolutions of Deformation-Induced ε-Martensite and Damage in a High-Mn Steel. Metall Mater Trans A 51, 6184–6194 (2020). https://doi.org/10.1007/s11661-020-06021-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06021-7

Navigation