Skip to main content
Log in

In-Situ Monitoring for Defect Identification in Nickel Alloy Complex Geometries Fabricated by L-PBF Additive Manufacturing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Published literature shows defect formation during laser powder bed fusion additive manufacturing (AM) of nickel base superalloys are sensitive to alloy chemistry, processing conditions, and geometry. In this work, ability to detect spatial distributions of defects is explored using in-situ monitoring of thermal signatures and surfaces. Simple and complex geometrical components were fabricated with CM247-LC® powder in an AM machine outfitted with optical and thermal sensors. The spatial and temporal variations of thermal signatures (peak intensity, decay, and number of gyrations), as well as, layer-by-layer optical images were analyzed. The observed thermal signatures were also verified with an analytical model for layer-wise heat transfer simulation that is sensitive to laser raster scan strategies. The cross-comparison data with reference to defects, obtained by X-ray tomography, were correlated with in-situ observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. https://www.itl.nist.gov/div898/handbook/pri/section3/pri3362.htm.

  2. Typical video from a cube geometry can be viewed in the following location: https://youtu.be/0WQTf7_KIBo.

  3. Typical video from a cube geometry can be viewed in the following location: https://youtu.be/TbOMhSdNZlo

  4. Online location for a typical output form SAHTM model for the current geometry https://youtu.be/d3Nx2P9dt2g.

  5. Online movie of the IR data from complex geometries: https://youtu.be/ejCK1V-Sj1w

  6. Online version of the in-situ optical image from the Eye Geometry: https://youtu.be/moylgF_TvBs

References

  1. W. E. Frazier, D. Polakovics, and W. Koegel, JOM, 2001, pp. 16–18

  2. K. Janssens, F. Lambert, S. Vanrostenberghe, and M. Vermeulen, Journal of Materials Processing and Technology, 2001, Vol. 112, pp. 174-184

    Article  CAS  Google Scholar 

  3. J. J. Lewandowski and M. Seifi, Annu. Rev. Mater., 2016, Vol. 46, pp. 151-186

    Article  CAS  Google Scholar 

  4. A. H. Chern, P. Nandwana, T. Yuan, M. M. Kirka, R. R. Dehoff, P. K. Liaw and C. E. Duty, International Journal of Fatigue, 2019, Vol. 119, pp. 173-184

    Article  CAS  Google Scholar 

  5. B. H. Jared, M. A. Aguilo, L. L. Beghini, B. L. Boyce, B. W. Clark, A. Cook, B. J. Kehr, and J. Robbins, Scripta Materialia, 2017, Vol. 135, pp. 141-147

    Article  CAS  Google Scholar 

  6. M. Seifi, A. Salem, J. Beuth, O. Harrison and J. J. Lewandowski, JOM, 2016, Vol. 68, pp. 747-764

    Article  Google Scholar 

  7. W. E. Frazier, Journal of Materials Engineering and Performance, 2014, Vol. 23, pp. 1917-1928

    Article  CAS  Google Scholar 

  8. Specification for fabrication of metal components using additive manufacturing, 1st Edition, AWS D20.1/D20.1M:2019, American Welding Society, 2019

  9. S. Yoder, P. Nandwana, V. Paquit, M. Kirka, A. Scopel, R. R. Dehoff and S. S. Babu, Additive manufacturing, 2019, Vol. 28, pp. 98-106

    CAS  Google Scholar 

  10. S. Yoder, S. Morgan, E. Barnes, C. Kinzy, P. Nandwana, M. Kirka, S. S. Babu, V. Paquit, R. R. Dehoff, Additive Manufacturing, 2018, Vol. 19, pp. 184-196

    CAS  Google Scholar 

  11. C. Frederick, M. M. Kirka, M. Haines, A. Staub, E. J. Schwalbach, D. Cullen, and S. S. Babu, Metallurgical and Materials Transaction A, 2018, Vol. 49, pp. 5080-5096

    Article  Google Scholar 

  12. Y. Lee, M. Kirka, S. Kim, N. Sridharan, A. Okello, R. R. Dehoff, and S. S. Babu, Metallurgical and Materials Transaction A, 2018, vol. 49, pp. 5065-5079

    Article  Google Scholar 

  13. S. J. Foster, K. Carver, R. B. Dinwiddie, F. List III, K. A. Unocic, A. Chaudhary and S. S. Babu, Metallurgical and Materials Transactions A, 2018, Vol. 49, pp. 5775-5798

    Article  Google Scholar 

  14. B. Baucher, A. B. Chaudhary, S. S. Babu and S. Chakraborty, Journal of Materials Engineering and Performance, 2019, Vol. 28, pp. 717-721

    Article  CAS  Google Scholar 

  15. S. R. Higson, P. Drake, A. Lyons, A. Peyton and B. Lionheart, Ironmaking and Steelmaking, 2006, Vol. 33, pp. 357-361

    Article  CAS  Google Scholar 

  16. M. Pliazhuk, C. Reyes, M. Martinez, J. Goldak, H. Nimrouzi and D. K. Aidun, Welding Journal, 2019, Vol. 98, pp. 251s-261s.

    Google Scholar 

  17. L. L. Simon, T. Merz, S. Dubuis, A. Lieb, K. Hungerbuhler, Chemical Engineering Research and Design, 2012, Vol. 90, pp. 1847-1855

    Article  CAS  Google Scholar 

  18. S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach and A. T. Clare, Materials and Design, 2016, Vol. 95, pp. 431-445

    Article  CAS  Google Scholar 

  19. P. Charalampous, I. Kostavelis and D. Tzovaras, Rapid Prototyping Journal, https://doi.org/10.1108/RPJ-08-2019-0224

  20. A. Gaikwad, R. Yavari, M. Montazeri, K. Cole, L. Bian and P. Rao, IISE Transactions, 2020, https://doi.org/10.1080/24725854.2019.1701753

    Article  Google Scholar 

  21. M. Grasso and M. Colosimo, Meas. Sci. Technol., 2017, Vol. 28, #044005

  22. S. Clijsters, T. Craeghs, S. Buls, K. Kempen, J.-P. Kruth, The International Journal of Advanced Manufacturing Technology, 2014, Vol. 75, pp. 1089-1101

    Article  Google Scholar 

  23. J. Raplee, A. Plotkowski, M.M. Kirka, R. Dinwiddie, A. Okello, R.R. Dehoff, S.S. Babu, Sci. Rep., 2017, Vol. 7, #43554

  24. P. S. Mohanty and J. Mazumder, Metallurgical and Materials Transactions B, 1998, Vol. 29B, pp. 1269-1279

    Article  CAS  Google Scholar 

  25. A. C. Hall and C. V. Robino, Science and Technology of Welding and Joining, 2004, Vol. 9, pp. 103-108

    Article  CAS  Google Scholar 

  26. S. S. Babu, Welding Journal, 2018 Vol. 97, pp. 1s-16s

    Article  Google Scholar 

  27. M. Grasso, V. Laguzza, Q. Semeraro, and B. M. Colosimo, J. Manuf. Sci. Eng., 2017, Vol. 139, #051001

  28. S. S. Babu, N. Raghavan, J. Raplee, S. J. Foster, C. Frederick, M. Haines, R. Dinwiddie, M. M. Kirka, A. Plotkowski, Y. Lee and R. R. Dehoff, Metall. Mater. Trans. A., 2018, Vol. 49, pp. 3764 - 3780

    Article  Google Scholar 

  29. X. Wang, L. N. Carter, B. Pang, M. M. Attallah and M. Loretto, Acta Materialia, 2017, Vol. 128, pp. 87-95

    Article  CAS  Google Scholar 

  30. L. N. Carter, C. Martin, P. J. Withers, and M. M. Attallah, Journal of Alloys and Compounds, 2014, Vol. 615, pp. 338-347

    Article  CAS  Google Scholar 

  31. Z. Feng, S. A. David, T. Zacharia, and C. L. Tsai, Science and Technology of Welding and Joining, 1992, Vol. 2, pp. 11-19

    Article  Google Scholar 

  32. T. Zacharia, Welding Journal, 1994, Vol. 73, pp. 164s-172s

    Google Scholar 

  33. Park, J. -W., Vitek, J. M., Babu, S. S., and David, S. A., Science and Technology of Welding and Joining, 2004, 9, 472 – 482

    Article  CAS  Google Scholar 

  34. J. Dupont, J. C. Lippold, and S. D. Kiser, “Welding Metallurgy and Weldability of Nickel base alloys,” 2009, John Wiley and Sons Inc., USA

    Book  Google Scholar 

  35. S. Kou, “Welding Metallurgy”, Wiley: Hoboken, 2002

    Book  Google Scholar 

  36. S. Chandrasekar, J. Coble, S. Yoder, P. Nandwana, R. Dehoff, V. Paquit, and S. S. Babu, Addit. Manuf., 2020, Vol. 32, # 100994

  37. H. Schafstall, R. Assaker, and V. Mensing, “Additive Manufacturing 2020,” Hexagon and MSC Software, 2020

  38. Johnson, Gordon R., and William H. Cook, Engineering fracture mechanics 21.1 (1985): 31-48

    Article  Google Scholar 

  39. Deng, Dean, and Hidekazu Murakawa. Computational Materials Science 43.2 (2008): 353-365

    Article  Google Scholar 

  40. Parry, L., I. A. Ashcroft, and R. D. Wildman. Addit. Manuf. 12 (2016): 1–15

    Google Scholar 

  41. O. Grong, “Metallurgical Modeling of Welding,” 2nd Edition, The Institute of Materials, London, 1997

    Google Scholar 

  42. M. G. Chapman, M. D. Uchic, J. M. Scott, M. N. Shah, S. P. Donegan, P. A. Shade, W. D. Musinski, M. Obstalecki, M. A. Groeber, D. Menasche, M. E. Cox, and E. J. Schwalbach, Microsc. Microanal., 2019, pp. 342–43

  43. N. Otsu, IEEE Transactions on Systems, Man, and Cybernetics, 1979, Vol. 9, pp. 62-66

    Article  Google Scholar 

  44. A. Plotkowski, M. M. Kirka, and S. S. Babu, Additive Manufacturing, 2017, Vol. 18, pp. 256-268

    CAS  Google Scholar 

  45. Saunders, N., et al., JOM, 55.12 (2003): 60-65

    Article  CAS  Google Scholar 

  46. O. Grong, “The Mathematical modeling of welding,” 2nd Edition, The Institute of Materials, London, 1997

    Google Scholar 

  47. K. Masubuchi, “Analyses of welded structures,” Pergamon Press, New York, 1980

    Google Scholar 

  48. L. Scime and J. Beuth, Additive Manufacturing, 2018, Vol. 19, pp. 114-126

    Article  Google Scholar 

  49. P. S. Korinko, J. T. Bobbitt III, M. J. Morgan, M. Reigel, F. A. List III, S. S. Babu, JOM, 2019, Vol. 71, pp. 1095-1104

    Article  CAS  Google Scholar 

  50. M. P. Haines, N. J. Peter, S. S. Babu and E. A. Jägle, Addit. Manuf., 2020, Vol. 33, #101178

Download references

Acknowledgments

Authors thank Ms. Sujana Chandrasekhar for critical review of the document. This research was sponsored by Honeywell Aerospace and the physical experimentation was completed by support through the Manufacturing Demonstration Facility at Oak Ridge National Research Laboratory. SB also acknowledges partial support from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT- Battelle, LLC. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05- 00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (https://www.energy.gov/downloads/doe-public-access-plan). SB acknowledges the partial support from the US Department of the Navy, Office of Naval Research under ONR award number N00014-18-1-2794. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Office of Naval Research. Part of the research supported from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (https://www.energy.gov/downloads/doe-public-access-plan)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Logan McNeil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 17, 2020. Accepted September 15, 2020.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 975 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McNeil, J.L., Sisco, K., Frederick, C. et al. In-Situ Monitoring for Defect Identification in Nickel Alloy Complex Geometries Fabricated by L-PBF Additive Manufacturing. Metall Mater Trans A 51, 6528–6545 (2020). https://doi.org/10.1007/s11661-020-06036-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06036-0

Navigation