Skip to main content
Log in

Microstructure Characterization and Mechanical Properties in Individual Zones of Linear Friction Welded Ti-6Al-4V Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Linear friction welding (LFW) offers a new approach to manufacture aerospace components while improving the buy-to-fly ratio. However, the fundamental knowledge associated with the LFW process, including the attendant microstructural evolution and corresponding mechanical behavior is still rather limited. In this research effort, subscale tensile coupons were prepared and tested to determine the properties of each discrete zone of the linear friction welded specimen, namely the welded zone, thermomechanically affected zone, and parent material. The results show that the yield strength of the welded zone is 20 pct higher than the parent material and the thermomechanically affected zone is 13 pct higher than the parent material. Materials characterization, including optical microscopy, scanning electron microscopy, electron backscattered diffraction-based orientation microscopy and transmission electron microscopy, was conducted to develop an understanding of the microstructure–property relationships. The highly refined nature of the microstructure makes final interpretations challenging, but the evidence suggests that the mechanical behavior is dominated by phenomenon that operate at the 1 to 50 nm length scale, including strain hardening and highly refined features that hinder slip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Due to the industrial nature of this project (the work was conducted as part of an industrial consortium), the parameters for the linear friction welding properties are not available to be disclosed within this study.

  2. This random distribution is only random in the sense that the Burgers orientation relationship is obeyed, and multiple non-random variants nucleate from the prior beta grains which may or may not have random orientations in the sample reference frame.

  3. While this is an approximation, it is straightforward to consider a sphere of radius r that is uniaxially compressed, resulting in a compressive strain \( (\varepsilon_{z} ) \) and two in-plane elongations \( (\varepsilon_{x} ,\varepsilon_{y} ) \), from which the elongations in the respective directions can be calculated and the eccentricity of the particle determined (\( e = \sqrt {1 - \frac{{b^{2} }}{{a^{2} }}} \), where b is the compressed dimension along the z direction and a is the elongated dimension in both the x and y directions).

References

  1. P. Wanjara, M. Jahazi: Metall. Mater. Trans. A, 2005, vol. 36(8), pp. 2149-64.

    Article  CAS  Google Scholar 

  2. G. Buffa, D. Campanella, M. Cammalleri, A. Ducato, A. Astarita, A. Squillace, S. Esposito, L. Fratini: Procedia Manuf., 2015, vol. 1, pp. 429-41.

    Article  Google Scholar 

  3. J. Romero, M.M. Attallah, M. Preuss, M. Karadge, S.E. Bray: Acta Mater., 2009, vol. 57(18), pp. 5582-92.

    Article  CAS  Google Scholar 

  4. A. Vairis, M. Frost: Wear, 1998, vol. 217(1), pp. 117-31.

    Article  CAS  Google Scholar 

  5. A. Vairis, M. Frost: Mater. Sci. Eng. A, 1999, vol. 271(1-2), pp. 477-84.

    Article  Google Scholar 

  6. A.R. McAndrew, P.A. Colegrove, A.C. Addison, B.C.D. Flipo, M.J. Russell: Metall. Mater. Trans. A, 2014, vol. 45(13), pp. 6118-28.

    Article  Google Scholar 

  7. A.R. McAndrew, P.A. Colegrove, C. Bühr, B.C.D. Flipo, A. Vairis: Prog. Mater. Sci., 2018, vol. 92, pp. 225-57.

    Article  CAS  Google Scholar 

  8. I. Bhamji, M. Preuss, P.L. Threadgill, A.C. Addison: Mater. Sci. Tech., 2011, vol. 27(1), pp. 2-12.

    Article  CAS  Google Scholar 

  9. M. Karadge, M. Preuss, C. Lovell, P.J. Withers, S. Bray: Metall. Mater. Trans. A, 2007, vol. 459(1-2), pp. 182-91.

    Google Scholar 

  10. Y. Guo, Y. Chiu, M.M. Attallah, H. Li, S. Bray, P. Bowen: J. Mater. Eng. Perform., 2012, vol. 21(5), pp. 770-6.

    Article  CAS  Google Scholar 

  11. K. Hiroshi, N. Koji, T. Wakabayashi, N. Kenji: IHI Eng. Rev., 2014, vol. 47(1), pp. 40–43.

    Google Scholar 

  12. Y. Guo, M.M. Attallah, Y. Chiu, H. Li, S. Bray, P. Bowen: Mater. Charact., 2017, vol. 127, pp. 342-7.

    Article  CAS  Google Scholar 

  13. W.Y. Li, T. Ma, Y. Zhang, Q. Xu, J. Li, S. Yang, H. Liao: Adv. Eng. Mater., 2008, vol. 10(1-2), pp. 89-92.

    Article  CAS  Google Scholar 

  14. M. Grujicic, G. Arakere, B. Pandurangan, C.-F. Yen, B. Cheeseman: J. Mater. Eng. Perform., 2012, vol. 21(10), pp. 2011-23.

    Article  CAS  Google Scholar 

  15. A.R. McAndrew, P.A. Colegrove, A.C. Addison, B.C.D. Flipo, M.J. Russell: Mater. Design, 2015, vol. 66, pp. 183-95.

    Article  CAS  Google Scholar 

  16. W. Li, H. Wu, T. Ma, C. Yang, Z. Chen: Adv. Eng. Mater., 2012, vol. 14(5), pp. 312-8.

    Article  Google Scholar 

  17. R. Turner, J.-C. Gebelin, R. Ward, R. Reed: Acta Mater., 2011, vol. 59(10), pp. 3792-803.

    Article  CAS  Google Scholar 

  18. S. Chandran, P. Verleysen, J. Lian, W. Liu, S. Münstermann: Procedia Eng., 2017, vol. 197, pp. 204-13.

    Article  CAS  Google Scholar 

  19. I. Ghamarian, Y. Liu, P. Samimi, P.C. Collins: Acta Mater., 2014, vol. 79, pp. 203-15.

    Article  CAS  Google Scholar 

  20. G. Lütjering, J.C. Williams: Titanium, Springer, Berlin, 2007.

    Google Scholar 

  21. T. Ahmed, H. Rack: Mater. Sci. Eng. A, 1998, vol. 243(1-2), pp. 206-11.

    Article  Google Scholar 

  22. MIPARTM, MIPAR User Manual v2.2. https://www.manula.com/manuals/mipar/user-manual/latest/en/topic/feature-measurements. Accessed 2019.

  23. X. Gong, S. Mohan, M. Mendoza, A. Gray, P. Collins, S.R. Kalidindi: Integr. Mater. Manuf. Innov., 2017, vol. 6, pp. 218–28.

    Article  Google Scholar 

  24. S. Balachandran, A. Kashiwar, A. Choudhury, D. Banerjee, R. Shi, Y. Wang: Acta Mater., 2016, vol. 106, pp. 374-87.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Center for Advanced Non-Ferrous Structural Alloys (CANFSA), an NSF Industry/University Cooperative Research Center (I/UCRC) between Iowa State University, and The Colorado School of Mines. The authors also acknowledge the support of the Defense Advanced Research Projects Agency (DARPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. Collins.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 13, 2020; accepted September 24, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendoza, M.Y., Quintana, M.J. & Collins, P.C. Microstructure Characterization and Mechanical Properties in Individual Zones of Linear Friction Welded Ti-6Al-4V Alloy. Metall Mater Trans A 51, 6294–6306 (2020). https://doi.org/10.1007/s11661-020-06043-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06043-1

Navigation