Skip to main content
Log in

Ag2O/GO/TiO2 composite nanoparticles: synthesis, characterization, and optical studies

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Ag2O/GO/TiO2 composite nanoparticles were synthesized via a two-stage route including wet chemical and sol-gel techniques. The phase regarding the composition and morphology of composite nanoparticles was characterized using X-ray diffraction (XRD), Fourier transfer infrared (FT-IR) spectroscopy, and field emission scanning electron microscopy (FESEM). The structural studies revealed the successful formation of 300-nm Ag2O/GO/TiO2 composite spheres self-assembled to 35-nm particle aggregates. UV-Vis diffuse reflectance spectroscopy (DRS) was utilized to investigate optical properties. The results indicated an absorption edge in the UV region with a band-gap equivalent to 3.2 eV for Ag2O/GO/TiO2 composite nanoparticles. The morphological features of the sample were investigated with a Zeiss (EM10C, Germany) transmission electron microscope (TEM) operating at 100 kV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature. 238, 37 (1972)

    Article  CAS  Google Scholar 

  2. Subramanian, V., Wolf, E., Kamat, P.V.: Semiconductor- metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J. Phys. Chem. B. 105, 11439–11446 (2001)

    Article  CAS  Google Scholar 

  3. S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2, Science (80-. ). 297 (2002) 2243–2245

  4. Yu, J.C., Yu, J., Ho, W., Jiang, Z., Zhang, L.: Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater. 14, 3808–3816 (2002)

    Article  CAS  Google Scholar 

  5. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science (80-. ). 293 (2001) 269–271

  6. Sakthivel, S., Kisch, H.: Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide. ChemPhysChem. 4, 487–490 (2003)

    Article  CAS  Google Scholar 

  7. Burda, C., Lou, Y., Chen, X., Samia, A.C.S., Stout, J., Gole, J.L.: Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett. 3, 1049–1051 (2003)

    Article  CAS  Google Scholar 

  8. Saleh, R., Taufik, A., Prakoso, S.P.: Fabrication of Ag2O/TiO2 composites on nanographene platelets for the removal of organic pollutants: influence of oxidants and inorganic anions. Appl Surf Sci. 480, 697–708 (2019)

    Article  CAS  Google Scholar 

  9. Chenchana, A., Nemamcha, A., Moumeni, H., Rodríguez, J.M.D., Araña, J., Navío, J.A., Díaz, O.G., Melián, E.P.: Photodegradation of 2, 4-dichlorophenoxyacetic acid over TiO2 (B)/anatase nanobelts and Au-TiO2 (B)/anatase nanobelts. Appl Surf Sci. 467, 1076–1087 (2019)

    Article  Google Scholar 

  10. Viana, M.M., Soares, V.F., Mohallem, N.D.S.: Synthesis, and characterization of TiO2 nanoparticles. Ceram Int. 36, 2047–2053 (2010)

    Article  CAS  Google Scholar 

  11. Mathew, S., Kumar Prasad, A., Benoy, T., Rakesh, P.P., Hari, M., Libish, T.M., Radhakrishnan, P., Nampoori, V.P.N., Vallabhan, C.P.G.: UV-visible photoluminescence of TiO 2 nanoparticles prepared by hydrothermal method. J Fluoresc. 22, 1563–1569 (2012)

    Article  CAS  Google Scholar 

  12. Guang, M., Xia, Y., Wang, D., Zeng, X.-F., Wang, J.-X., Chen, J.-F.: Controllable synthesis of transparent dispersions of monodisperse anatase-TiO2 nanoparticles and nanorods. Mater Chem Phys. 224, 100–106 (2019)

    Article  CAS  Google Scholar 

  13. Nagaraj, G., Irudayaraj, A., Josephine, R.L.: Tuning the optical band gap of pure TiO2 via the photon-induced method. Optik (Stuttg). 179, 889–894 (2019)

    Article  CAS  Google Scholar 

  14. Abisharani, J.M., Devikala, S., Kumar, R.D., Arthanareeswari, M., Kamaraj, P.: Green synthesis of TiO2 nanoparticles using Cucurbita pepo seeds extract. Mater Today Proc. 14, 302–307 (2019)

    Article  CAS  Google Scholar 

  15. Abazovi, N.D., Omor, M.I., Anin, M.D.D., Jovanovi, D.J., Ahrenkiel, S.P., Nedeljkovi, J.M.: Photoluminescence of anatase and rutile TiO2 particles. J. Phys. Chem. B. 110, 25366–25370 (2006)

    Article  Google Scholar 

  16. Ren, L., Li, Y., Mao, M., Lan, L., Lao, X., Zhao, X.: Significant improvement in photocatalytic activity by forming homojunction between anatase TiO2 nanosheets and anatase TiO2 nanoparticles. Appl Surf Sci. (2019)

  17. Lv, K., Fang, S., Si, L., Xia, Y., Ho, W., Li, M.: Fabrication of TiO2 nanorod assembly grafted rGO (rGO@ TiO2-NR) hybridized flake-like photocatalyst. Appl Surf Sci. 391, 218–227 (2017)

    Article  CAS  Google Scholar 

  18. Qiu, P., Sun, X., Lai, Y., Gao, P., Chen, C., Ge, L.: N-doped TiO2@ TiO2 visible light active film with stable and efficient photocathodic protection performance. J Electroanal Chem. 844, 91–98 (2019)

    Article  CAS  Google Scholar 

  19. Sadanandam, G., Valluri, D.K., Scurrell, M.S.: Highly stabilized Ag2O-loaded nano TiO2 for hydrogen production from glycerol: water mixtures under solar light irradiation. Int J Hydrog Energy. 42, 807–820 (2017)

    Article  CAS  Google Scholar 

  20. Yang, X., Wang, Y., Wang, Z., Lv, X., Jia, H., Kong, J., Yu, M.: Preparation of CdS/TiO2 nanotube arrays and the enhanced photocatalytic property. Ceram Int. 42, 7192–7202 (2016)

    Article  CAS  Google Scholar 

  21. Bandara, J., Hadapangoda, C.C., Jayasekera, W.G.: TiO2/MgO composite photocatalyst: the role of MgO in photoinduced charge carrier separation. Appl Catal B Environ. 50, 83–88 (2004)

    Article  CAS  Google Scholar 

  22. Toloman, D., Pana, O., Stefan, M., Popa, A., Leostean, C., Macavei, S., Silipas, D., Perhaita, I., Lazar, M.D., Barbu-Tudoran, L.: Photocatalytic activity of SnO 2 -TiO 2 composite nanoparticles modified with PVP. J Colloid Interface Sci. 542, 296–307 (2019). https://doi.org/10.1016/j.jcis.2019.02.026

    Article  CAS  Google Scholar 

  23. Upadhyay, G.K., Rajput, J.K., Pathak, T.K., Kumar, V., Purohit, L.P.: Synthesis of ZnO: TiO2 nanocomposites for photocatalyst application in visible light. Vacuum. 160, 154–163 (2019)

    Article  CAS  Google Scholar 

  24. Tahir, M.B., Farman, S., Rafique, M., Shakil, M., Khan, M.I., Ijaz, M., Mubeen, I., Ashraf, M., Nadeem Riaz, K.: Photocatalytic performance of hybrid WO3/TiO2 nanomaterials for the degradation of methylene blue under visible light irradiation. Int J Environ Anal Chem. 1–13 (2019)

  25. El-Sayed, S.M., Amer, M.A., Meaz, T.M., Deghiedy, N.M., El-Shershaby, H.A.: Investigational analysis on irradiated MgO-TiO2 binary oxide. Mater Res Express. 5, 56508 (2018)

    Article  Google Scholar 

  26. Varkey, A.J., Fort, A.F.: Some optical properties of silver peroxide (AgO) and silver oxide (Ag2O) films produced by chemical-bath deposition. Sol Energy Mater Sol Cells. 29, 253–259 (1993)

    Article  CAS  Google Scholar 

  27. Kudryashov, D.A., Grushevskaya, S.N., Vvedenskii, A.V.: Determining some structure-sensitive characteristics of nano-sized anodic Ag (I) oxide from photopotential spectroscopy. Prot. Met. 43, 591–599 (2007)

    Article  CAS  Google Scholar 

  28. Fang, F., Li, Q., Shang, J.K.: Enhanced visible-light absorption from Ag2O nanoparticles in nitrogen-doped TiO2 thin films. Surf Coatings Technol. 205, 2919–2923 (2011). https://doi.org/10.1016/j.surfcoat.2010.10.068

    Article  CAS  Google Scholar 

  29. Endo-Kimura, M., Janczarek, M., Bielan, Z., Zhang, D., Wang, K., Markowska-Szczupak, A., Kowalska, E.: Photocatalytic and antimicrobial properties of Ag2O/TiO2 heterojunction. ChemEngineering. 3, 3 (2019). https://doi.org/10.3390/chemengineering3010003

    Article  CAS  Google Scholar 

  30. Hou, Y., Pu, S., Shi, Q., Mandal, S., Ma, H., Xue, S., Cai, G., Bai, Y.: Ultrasonic impregnation assisted in-situ photoreduction deposition synthesis of Ag/TiO2/rGO ternary composites with synergistic enhanced photocatalytic activity. J Taiwan Inst Chem Eng. 104, 139–150 (2019). https://doi.org/10.1016/j.jtice.2019.08.023

    Article  CAS  Google Scholar 

  31. Liu, X., Wang, Z., Wu, Y., Liang, Z., Guo, Y., Xue, Y., Tian, J., Cui, H.: Integrating the Z-scheme heterojunction into a novel Ag 2 O@rGO@reduced TiO 2 photocatalyst: broadened light absorption and accelerated charge separation co-mediated highly efficient UV/visible/NIR light photocatalysis. J Colloid Interface Sci. 538, 689–698 (2019). https://doi.org/10.1016/j.jcis.2018.12.070

    Article  CAS  Google Scholar 

  32. Sullivan, K.T., Wu, C., Piekiel, N.W., Gaskell, K., Zachariah, M.R.: Synthesis, and reactivity of nano-Ag2O as an oxidizer for energetic systems yielding antimicrobial products. Combust Flame. 160, 438–446 (2013). https://doi.org/10.1016/j.combustflame.2012.09.011

    Article  CAS  Google Scholar 

  33. Xiao, L., Youji, L., Feitai, C., Peng, X., Ming, L.: Facile synthesis of mesoporous titanium dioxide doped by Ag-coated graphene with enhanced visible-light photocatalytic performance for methylene blue degradation. RSC Adv. 7, 25314–25324 (2017). https://doi.org/10.1039/c7ra02198d

    Article  CAS  Google Scholar 

  34. Olya, M.E., Vafaee, M., Jahangiri, M.: Modeling of acid dye decolorization by TiO2–Ag2O nano-photocatalytic process using response surface methodology modeling of acid dye decolorization by TiO2–Ag2O nano-photocatalyts. J Saudi Chem Soc. 21, 633–642 (2017). https://doi.org/10.1016/j.jscs.2015.07.006

    Article  CAS  Google Scholar 

  35. Franco Jr., A., H.: V Pessoni, optical band-gap and dielectric behavior in Ho-doped ZnO nanoparticles. Mater Lett. 180, 305–308 (2016)

    Article  CAS  Google Scholar 

  36. Kumar, V., Singh, R.G., Purohit, L.P., Singh, F.: Effect of swift heavy ion on structural and optical properties of undoped and doped nanocrystalline zinc oxide films. Adv Mat Lett. 4, 423–427 (2013)

    Article  Google Scholar 

  37. Hosseini, M., Haghighatzadeh, A., Mazinani, B.: Enhanced third-order optical susceptibility in heterogeneous wurtzite ZnO/anatase TiO2 core/shell nanostructures via controlled TiO2 shell thickness. Opt Mater (Amst). 92, 1–10 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Ahvaz Branch of Islamic Azad University and the authors would like to thank the Research Council for their generous support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kazem Mohammadi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayati, F., Mohammadi, M.K., Yengejeh, R.J. et al. Ag2O/GO/TiO2 composite nanoparticles: synthesis, characterization, and optical studies. J Aust Ceram Soc 57, 287–293 (2021). https://doi.org/10.1007/s41779-020-00528-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00528-3

Keywords

Navigation