Skip to main content
Log in

Preparation and electrochemical properties of Fe/Fe3O4@r-GO composite nanocage with 3D hollow structure

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Fe/Fe3O4@r-GO composite nanocages with a hollow porous heterostructure, which look like “flower cluster,” are prepared by a mild, simple, and flexible method, followed by a thermal treatment. Metal-organic framework Prussian blue (PB), used as a precursor of Fe3O4, possesses a special hollow porous morphology, which is able to shorten transmission path and relives the mechanical stress during charge/discharge cycles. Verified by SEM and TEM characterizations, the Fe/Fe3O4 nanocage coated with uniform graphene sheets is achieved. Furthermore, XRD and XPS analysis combined with TEM results also prove that the composite is mainly composed of Fe, Fe3O4, and C. A series of electrochemical tests show that Fe/Fe3O4@r-GO composite electrodes exhibit a superior reversible capacity, rate capability, and cycling stability. The composite delivers a high reversible capability of 1200 mAh g−1 after 160 cycles at a current density of 100 mA g−1. Especially, when the current density is increased to 1000 mA g−1, the composite delivers a capacity of 455 mAh g−1. Even at a current density of 2000 mA g−1, a capacity of 355 mAh g−1 is retained. The outstanding electrochemical performances are mainly attributed to the integrity of hollow porous nanocube structure and doping of moderate graphene, which enables to promote the conductivity of electrode and build a continue network between Fe/Fe3O4 nanocubes to further accelerate ion/electron migration rate and relieve mechanical stress during cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xu X, Shen K, Wen M (2018) Facile synthesis of three-dimensional Cu/Fe3O4 nanowires as binder-free anode for lithium-ion batteries. Appl Surf Sci 450:356–363

    Article  CAS  Google Scholar 

  2. Guo C, He J, Wu X (2018) Facile fabrication of honeycomb-like carbon network-encapsulated Fe/Fe3C/Fe3O4 with enhanced Li-storage performance. ACS Appl Mater Interfaces 10(42):35994–36001

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Z, Wang F, An Q (2015) Synthesis of graphene@ Fe3O4@ C core–shell nanosheets for high-performance lithium ion batteries. J Mater Chem A 3(13):7036–7043

    Article  CAS  Google Scholar 

  4. Jiang X, Yang X, Zhu Y (2015) Graphene/carbon-coated Fe3O4 nanoparticle hybrids for enhanced lithium storage. J Mater Chem A 3(5):2361–2369

    Article  CAS  Google Scholar 

  5. Wang H, Xie J, Almkhelfe H (2017) Microgel-assisted assembly of hierarchical porous reduced graphene oxide for high-performance lithium-ion battery anodes. J Mater Chem A 5(44):23228–23237

    Article  CAS  Google Scholar 

  6. Ma Y, Huang J, Lin L (2017) Self-assembly synthesis of 3D graphene-encapsulated hierarchical Fe3O4 nano-flower architecture with high lithium storage capacity and excellent rate capability. J Power Sources 365:98–108

    Article  CAS  Google Scholar 

  7. Wei W, Yang S, Zhou H (2013) 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv Mater 25(21):2909–2914

    Article  CAS  PubMed  Google Scholar 

  8. Bruck AM, Gannett CN, Bock DC (2017) The electrochemistry of Fe3O4/polypyrrole composite electrodes in lithium-ion cells: the role of polypyrrole in capacity retention. J Electrochem Soc 164(1):A6260–A6267

    Article  CAS  Google Scholar 

  9. Min J, Kierzek K, Chen X et al (2017) Facile synthesis of porous iron oxide/graphene hybird nanocomposites and potential application in electrochemical energy storage[J]. New J Chem. https://doi.org/10.1039/C7NJ03416D

  10. Shi X, Shuai Z, Chen X et al (2017) Effect of iron oxide impregnated in hollow carbon sphere as symmetric supercapacitors[J]. J Alloys Compd 726:466–473

    Article  CAS  Google Scholar 

  11. Xu Y, Feng J, Chen X et al (2015) Beaded structured CNTs-Fe3O4@C with low Fe3O4 content as anode materials with extra enhanced performances in lithium ion batteries[J]. RSC Adv 5:28864–28869

  12. Liu B, Zhang Q, Jin Z (2018) Uniform pomegranate-like nanoclusters organized by ultrafine transition metal oxide@ nitrogen-doped carbon subunits with enhanced lithium storage properties. Adv Energy Mater 8(7):1702347

    Article  CAS  Google Scholar 

  13. Wang Y, Gao Y, Shao J (2018) Ultrasmall Fe3O4 nanodots within N-doped carbon frameworks from MOFs uniformly anchored on carbon nanowebs for boosting Li-ion storage. J Mater Chem A 6(8):3659–3666

    Article  CAS  Google Scholar 

  14. Wang L, Wu J, Chen Y (2015) Hollow nitrogen-doped Fe3O4/carbon nanocages with hierarchical porosities as anode materials for lithium-ion batteries. Electrochim Acta 186:50–57

    Article  CAS  Google Scholar 

  15. Jiang T, Bu F, Feng X (2017) Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano 11(5):5140–5147

    Article  CAS  PubMed  Google Scholar 

  16. Zhang N, Chen C, Yan X (2017) Bacteria-inspired fabrication of Fe3O4-carbon/graphene foam for lithium-ion battery anodes. Electrochim Acta 223:39–46

    Article  CAS  Google Scholar 

  17. Zhou S, Zhou Y, Jiang W (2018) Synthesis of Fe3O4 cluster microspheres/graphene aerogels composite as anode for high-performance lithium ion battery. Appl Surf Sci 439:927–933

    Article  CAS  Google Scholar 

  18. Zhang M, Hou C, Halder A (2017) Interlocked graphene–Prussian blue hybrid composites enable multifunctional electrochemical applications. Biosens Bioelectron 89:570–577

    Article  CAS  PubMed  Google Scholar 

  19. Zhang L, Zhang A, Du D (2012) Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides. Nanoscale 4(15):4674–4679

    Article  CAS  PubMed  Google Scholar 

  20. Zhao G, Feng JJ, Zhang QL (2005) Synthesis and characterization of Prussian blue modified magnetite nanoparticles and its application to the electrocatalytic reduction of H2O2. Chem Mater 17(12):3154–3159

    Article  CAS  Google Scholar 

  21. Zhang L, Wu HB, Lou XW (2013) Metal–organic-frameworks-derived general formation of hollow structures with high complexity. J Am Chem Soc 135(29):10664–10672

    Article  CAS  PubMed  Google Scholar 

  22. Li Z, Li B, Yin L (2014) Prussion blue-supported annealing chemical reaction route synthesized double-shelled Fe2O3/Co3O4 hollow microcubes as anode materials for lithium-ion battery. ACS Appl Mater Interfaces 6(11):8098–8107

    Article  CAS  PubMed  Google Scholar 

  23. Liu L, Shi J, Wang R (2017) Fabrication of double-shelled Fe2O3/CeO2 boxes from CeO2-modified Prussian blue and their enhanced performances for CO removal and water treatment. J Alloys Compd 725:544–556

    Article  CAS  Google Scholar 

  24. Ai Q, Yuan Z, Huang R (2019) One-pot co-precipitation synthesis of Fe3O4 nanoparticles embedded in 3D carbonaceous matrix as anode for lithium ion batteries. J Mater Sci 54(5):4212–4224

    Article  CAS  Google Scholar 

  25. Zhang WM, Wu XL, Hu JS (2008) Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv Funct Mater 18(24):3941–3946

    Article  CAS  Google Scholar 

  26. Ma M, Zhang J, Shen W, Guo S (2019) Cladding transition metal oxide particles with graphene oxide sheets: an efficient protocol to improve their structural stability and lithium ion diffusion rate. J Solid State Electrochem 23(10):2969–2977

    Article  CAS  Google Scholar 

  27. Noerochim L, Wang JZ, Chou SL (2010) SnO2-coated multiwall carbon nanotube composite anode materials for rechargeable lithium-ion batteries. Electrochim Acta 56(1):314–320

    Article  CAS  Google Scholar 

  28. He J, Zhao S, Lian Y (2017) Graphene-doped carbon/Fe3O4 porous nanofibers with hierarchical band construction as high-performance anodes for lithium-ion batteries. Electrochim Acta 229:306–315

    Article  CAS  Google Scholar 

  29. Sathish M, Tomai T, Honma I (2012) Graphene anchored with Fe3O4 nanoparticles as anode for enhanced Li-ion storage. J Power Sources 217:85–91

    Article  CAS  Google Scholar 

  30. Li L, Raji ARO, Tour JM (2013) Graphene-wrapped MnO2–graphene nanoribbons as anode materials for high-performance lithium ion batteries. Adv Mater 25(43):6298–6302

    Article  CAS  PubMed  Google Scholar 

  31. Zhu Y, Murali S, Cai W (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    Article  CAS  PubMed  Google Scholar 

  32. Zheng GZ, Hui JY, Fei L (2011) Preparation of graphene oxide by ultrasound-assisted hummers method. Chinese J Inorg Chem 27:1753–1757

    Google Scholar 

  33. Shen X, Wu S, Liu Y (2009) Morphology syntheses and properties of well-defined Prussian blue nanocrystals by a facile solution approach. J Colloid Interface Sci 329(1):188–195

    Article  CAS  PubMed  Google Scholar 

  34. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  35. Wang Z, Luan D, Madhavi S (2012) Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ Sci 5(1):5252–5256

    Article  CAS  Google Scholar 

  36. Zhou G, Wang DW, Li F (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22(18):5306–5313

    Article  CAS  Google Scholar 

  37. Xu Y, Wu Q, Sun Y (2010) Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4(12):7358–7362

    Article  CAS  PubMed  Google Scholar 

  38. Xiao L, Wu D, Han S (2013) Self-assembled Fe2O3/graphene aerogel with high lithium storage performance. ACS Appl Mater Interfaces 5(9):3764–3769

    Article  CAS  PubMed  Google Scholar 

  39. Wang R, Xu C, Sun J (2014) Three-dimensional Fe2O3 nanocubes/nitrogen-doped graphene aerogels: nucleation mechanism and lithium storage properties. Sci Rep 4:7171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jin E, Lu X, Cui L (2010) Fabrication of graphene/prussian blue composite nanosheets and their electrocatalytic reduction of H2O2. Electrochim Acta 55(24):7230–7234

    Article  CAS  Google Scholar 

  41. Liu XW, Yao ZJ, Wang YF (2010) Graphene oxide sheet–prussian blue nanocomposites: green synthesis and their extraordinary electrochemical properties. Colloids Surf B: Biointerfaces 81(2):508–512

    Article  CAS  PubMed  Google Scholar 

  42. Kaneti YV, Tang J, Salunkhe RR (2017) Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv Mater 29(12):1604898

    Article  CAS  Google Scholar 

  43. He Z, Wang K, Zhu S (2018) MOF-derived hierarchical MnO-doped Fe3O4@ C composite nanospheres with enhanced lithium storage. ACS Appl Mater Interfaces 10(13):10974–10985

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by Hubei Provincial Major Technology Innovation project of China (No. 2018AAA056) and the International Science & Technology Cooperation Program of China (2016YFE0124300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songdong Yuan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Ai, Q., Yang, C. et al. Preparation and electrochemical properties of Fe/Fe3O4@r-GO composite nanocage with 3D hollow structure. J Solid State Electrochem 25, 869–879 (2021). https://doi.org/10.1007/s10008-020-04865-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04865-y

Keywords

Navigation