Skip to main content
Log in

Effect of Annealing Temperature on Structural Phase Transformations and Band Gap Reduction for Photocatalytic Activity of Mesopores TiO2 Nanocatalysts

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The titanium dioxide nanocatalyst (TiO2:NC) was fabricated by chemical precipitation method and annealed at different temperatures. The texture parameters was estimated by Barrett–Joyner–Halenda (BJH) and Brunauer–Emmett–Teller (BET) utilizing nitrogen adsorption–desorption data. The crystal phase transition, enhanced crystallinity and increase in crystallite sizes with temperature were studied by using X-ray diffractograms (XRD). Coinciding with an increase in crystallite size supervising annealing temperatures, the surface area of the TiO2:NC decreases. The average grain size as calculated from scanning electron microscopy (SEM) initially decreases with increasing annealing temperature (300 °C), whereas further increase in annealing temperature (600 °C), is accompanied by the increase in grain size. A red shift was observed in the diffuse reflectance spectra (DRS) caused by a decrease in band gap energy with rising annealing temperatures. The chemical composition was examined by using Fourier transform infrared (FTIR) and energy dispersive X-ray (EDX) spectroscopies. All the annealed TiO2:NC samples were used as photocatalysts for the degradation of rhodamine 6G (R6G) under simulated solar light source. The TiO2:NC annealed at 600 °C have a higher degradation rate constant than the other samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.B. Senturk, D. Ozdes, C. Duran, Desalination 252, 81 (2010)

    CAS  Google Scholar 

  2. D. Lutic, C. Coromelci-Pastravanu, I. Cretescu, I. Poulios, C.D. Stan, Int. J. Photoenergy 2012, 1 (2012)

    Google Scholar 

  3. N.A. Almuslet, M.A. Baba, IOSR J. Appl. Phys. 08, 99 (2016)

    Google Scholar 

  4. U.A. Isah, A.I. Gatawa, Adv. Appl. Sci. Res. 3, 4036 (2012)

    CAS  Google Scholar 

  5. D. Sun, Z. Zhang, M. Wang, Y. Wu, Am. J. Anal. Chem. 04, 17 (2013)

    Google Scholar 

  6. S.M. Gupta, M. Tripathi, Chin. Sci. Bull. 56, 1639 (2011)

    CAS  Google Scholar 

  7. P. Rasheed, S. Haq, M. Waseem, S.U. Rehman, W. Rehman, Mater. Res. Express 7(2), 1 (2020)

    Google Scholar 

  8. S. Haq, W. Rehman, M. Waseem, M. Rehman, K.H. Shah, J. Inorg. Organomet. Polym. Mater. 65, 1198 (2019)

    Google Scholar 

  9. S. Haq, W. Rehman, M. Waseem, V. Meynen, S.U. Awan, S. Saeed, N. Iqbal, J. Photochem. Photobiol. B 186, 116 (2018)

    CAS  PubMed  Google Scholar 

  10. N. Bibi, S. Haq, W. Rehman, M. Waseem, M.U. Rehman, A. Shah, B. Khan, P. Rasheed, Biointerface Res. Appl. Chem. 10, 5895 (2020)

    CAS  Google Scholar 

  11. S. Haq, W. Rehman, M. Rehman, J. Inorg. Organomet. Polym. Mater. 30, 1197 (2020)

    CAS  Google Scholar 

  12. V. Vetrivel, K. Rajendran, V. Kalaiselvi, Int. J. ChemTech Res. 7, 1090 (2015)

    Google Scholar 

  13. D. Fang, Z. Luo, K. Huang, D.C. Lagoudas, Appl. Surf. Sci. 257, 6451 (2011)

    CAS  Google Scholar 

  14. K. Lv, Q. Xiang, J. Yu, Appl. Catal. B 104, 275 (2011)

    CAS  Google Scholar 

  15. A.M. Asiri, M.S. Al-amoudi, A.D. Al-talhi, J. Saudi Chem. Soc. 15, 121 (2011)

    CAS  Google Scholar 

  16. B. Munirathinam, L. Neelakantan, J. Electroanal. Chem. 770, 73 (2016)

    CAS  Google Scholar 

  17. E.J. Kim, S.H. Hahn, Mater. Lett. 49, 244 (2001)

    CAS  Google Scholar 

  18. R. Ashraf, S. Riaz, Z.N. Kayani, S. Naseem, Mater. Today 10, 5468 (2015)

    Google Scholar 

  19. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 1051 (2015)

    CAS  Google Scholar 

  20. J. Yu, H. Yu, B. Cheng, C. Trapalis, J. Mol. Catal. A 249, 135 (2006)

    CAS  Google Scholar 

  21. J.-G. Yu, H.-G. Yu, B. Cheng, X.-J. Zhao, J.C. Yu, J.C.J. Wing-Kei Ho, H. Yu, B. Yu, X. Cheng, J.C.J. Zhao, Yu, W. Ho, J. Phys. Chem. B 107, 13871 (2003)

    CAS  Google Scholar 

  22. C.J. Taylor, D.C. Gilmer, D.G. Colombo, G.D. Wilk, S.A. Campbell, J. Roberts, W.L. Gladfelter, J. Am. Chem. Soc. 121, 5220 (1999)

    CAS  Google Scholar 

  23. Z.S. Khalifa, RSC Adv. 7, 30295 (2017)

    CAS  Google Scholar 

  24. W. Li, S.I. Shah, M. Sung, C.P. Huang, J. Am. Vaccum Soc. 20, 2303 (2002)

    CAS  Google Scholar 

  25. Z.S. Khalifa, H. Lin, S. Ismat Shah, Thin Solid Films 518, 5457 (2010)

    CAS  Google Scholar 

  26. M.T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, L. Servant, M.M. Müller, H.-J. Kleebe, J. Ziegler, W. Jaegermann, Inorg. Chem. 51, 7764 (2012)

    CAS  PubMed  Google Scholar 

  27. R. Asahi, Y. Taga, W. Mannstadt, Phys. Rev. B 61, 7459 (2000)

    CAS  Google Scholar 

  28. C. Di Valentin, G. Pacchioni, A. Selloni, Phys. Rev. B 70, 085116 (2004)

    Google Scholar 

  29. J. Muscat, V. Swamy, N.M. Harrison, Phys. Rev. B 65, 2241121 (2002)

    Google Scholar 

  30. J.C. Woicik, E.J. Nelson, L. Kronik, M. Jain, J.R. Chelikowsky, D. Heskett, L.E. Berman, G.S. Herman, Phys. Rev. Lett. 89, 077401 (2002)

    CAS  PubMed  Google Scholar 

  31. S. Haq, W. Rehman, M. Waseem, R. Javed, M. Shahid, Appl. Nanosci. 8, 11 (2018)

    CAS  Google Scholar 

  32. N. Nagarani, P. Smgcw, V. Vasu, J. Photonics Spintronics 2, 19 (2013)

    Google Scholar 

  33. J. Liqiang, F. Honggang, W. Baiqi, W. Dejun, Appl. Catal. B 62, 282 (2006)

    Google Scholar 

  34. H. Pan, X. Wang, S. Xiao, L. Yu, Z. Zhang, Indian J. Eng. Mater. Sci. 20, 561 (2013)

    CAS  Google Scholar 

  35. S. Shoukat, S. Haq, W. Rehman, M. Waseem, M.I. Shahzad, N. Shahzad, M. Hafeez, S.U. Din, Zain-ul-Abdin, A. Shah, P. Rasheed, J. Inorg. Organomet. Polym. Mater. 1, 1–11 (2020)

    Google Scholar 

  36. S. Shoukat, S. Haq, W. Rehman, M. Waseem, M. Hafeez, S.U. Din, Zain-ul-Abdin, P. Ahmad, M. Ur Rehman, A. Shah, B. Khan, J. Inorg. Organomet. Polym. Mater. 1 (2020)

  37. T. Aarthi, G. Madras, Ind. Eng. Chem. Res. 46, 7 (2007)

    CAS  Google Scholar 

  38. H. Yuan, J. Xu, Appl. Catal. B 1, 269 (2010)

    Google Scholar 

  39. S. Patil, V. Shrivastava, G.H. Sonawane, K.A. Commerce, Desalin. Water Treat. 54(2), 374 (2015)

    CAS  Google Scholar 

  40. H. Yuan, J. Xu, Int. J. Chem. Eng. Appl. 1, 241 (2010)

    CAS  Google Scholar 

  41. S. Haq, S. Shoukat, W. Rehman, M. Waseem, A. Shah, J. Mol. Liq. 318, 114260 (2020)

    CAS  Google Scholar 

  42. J. Kaur, S. Bansal, S. Singhal, Physica B 416, 33 (2013)

    CAS  Google Scholar 

  43. B. Smarsly, D. Grosso, T. Brezesinski, N. Pinna, C. Boissière, M. Antonietti, C. Sanchez, Chem. Mater. 16, 2948 (2004)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirajul Haq.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haq, S., Rehman, W., Waseem, M. et al. Effect of Annealing Temperature on Structural Phase Transformations and Band Gap Reduction for Photocatalytic Activity of Mesopores TiO2 Nanocatalysts. J Inorg Organomet Polym 31, 1312–1322 (2021). https://doi.org/10.1007/s10904-020-01810-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01810-4

Keywords

Navigation