Skip to main content
Log in

Visible Light Photocatalyst Anatase Phased TiO2 Nanoparticles for Enhanced Antibacterial Performance

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This study reports the development of anatase TiO2 synthesized by facile photon-induced method (PIM) at various reaction times of 6 days, 8 days, 10-day samples. The 10 days TiO2 sample shows stable anatase phase, whereas 100% rutile phase at the same temperature was observed for standard TiO2. Mainly, the PIM was used to tuning the properties of visible light absorbance TiO2 photocatalyst used for improving antibacterial performance. The antibacterial activity of TiO2 against Staphylococcus aureus and Escherichia coli was determined by the agar disc diffusion method. Anatase TiO2 nanoparticles demonstrated excellent antibacterial activity against extracellular S. aureus with 80% and E. coli with 82% killing efficacy at concentrations as low as 100 μg/mL, which is 100% faster than the standard and other pure TiO2 reported earlier. The obtained undoped anatase Titania with enhanced chemical reactivity has great potential for antibacterial properties. Moreover, the smaller crystallite size (25 nm) and narrowing bandgap (2.96 eV) TiO2 nanoparticles were more effective in killing bacteria compared with standard TiO2. Therefore, this work indicated that anatase phased TiO2 under visible light absorbance has good potential with excellent clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Jiang, J. Li, C. Xing, Z. Zhang, S. Meng, M. Chen, and A. C. S. Appl (2015). Mater. Interfaces 7, 19234–19242.

    Article  CAS  Google Scholar 

  2. J. Theerthagiri, A. P. Murthy, V. Elakkiya, S. Chandrasekaran, P. Nithyadharseni, Z. Khan, R. A. Senthil, R. Shanker, M. Raghavender, P. Kuppusami, J. Madhavan, and M. Ashokkumar (2018). J. Ind. Eng. Chem. 64, 16–59.

    Article  CAS  Google Scholar 

  3. M.R. Delsouz Khaki, M.S. Shafeeyan, A.A. Abdul Raman, W.M.A. Wan Daud, J. Environ. Manag, 2017, 198, 78–94.

  4. S. Y. Chae, C. S. Lee, H. Jung, O. S. Joo, B. K. Min, J. H. Kim, Y. J. Hwang, and A. C. S. Appl (2017). Mater. Interfaces 9, 19780–19790.

    Article  CAS  Google Scholar 

  5. R. A. Senthil, A. Priya, J. Theerthagiri, A. Selvi, P. Nithyadharseni, and J. Madhavan (2018). Ionics 24, 3673–3684.

    Article  CAS  Google Scholar 

  6. K. Wang, X. Wu, G. Zhang, J. Li, Y. Li, and A. C. S. Sustain (2018). Chem. Eng 6, 6682–6692.

    CAS  Google Scholar 

  7. H. Wang, C. Wang, X. Cui, L. Qin, R. Ding, L. Wang, Z. Liu, Z. Zheng, and B. Lv (2018). Appl. Catal. B Environ. 221, 169–178.

    Article  CAS  Google Scholar 

  8. P. S. Kumar, S. A. S. Nizar, J. Solardaramurthy, P. Ragupathy, V. Thavasi, S. G. Mhaisalkar, and S. Ramakrishna (2011). J. Mater. Chem 21, 9784–9790.

    Article  CAS  Google Scholar 

  9. P.S. Kumar, V. Aravindan, J. Solardaramurthy, V. thavasi, S.G. Mhaisalkar, S. Ramakrishna, S. Madhavi, RSC Adv., 2012, 2, 7983–7987.

  10. S. Banerjee, D. D. Dionysiou, and S. C. Pillai (2015). Appl. Catal. B Environ. 176, 396–428.

    Article  CAS  Google Scholar 

  11. M. R. Mohammad, D. S. Ahmed, and M. K. A. Mohammed (2019). J. Sol-Gel Sci. Technol. 90, 498–509.

    Article  CAS  Google Scholar 

  12. D. S. Ahmed, M. K. A. Mohammed, and M. R. Mohamma (2020). Chem. Pap. 74, 197–208.

    Article  CAS  Google Scholar 

  13. M. K. A. Mohammed (2020). Optik 223, 165607.

    Article  CAS  Google Scholar 

  14. N. Sakai, R. Wang, A. Fujishima, and T. Watanabe (1998). Langmuir 14, 5918–5920.

    Article  CAS  Google Scholar 

  15. D. Christian, A. Miguel, P. Christopher, and S. Kley (2014). TiO2 Anatase with a bandgap in the visible region. Nano Lett. 14, 6533–6538.

    Article  CAS  Google Scholar 

  16. M. Inagaki, R. Nonaka, B. Tryba, and A. W. Morawski (2006). Chemosphere 64, 437–445.

    Article  PubMed  CAS  Google Scholar 

  17. N. Xu, Z. Shi, Y. Fan, J. Dong, and J. Shi (1999). Ind. Eng. Chem. Res 38, 373–379.

    Article  CAS  Google Scholar 

  18. B. Tryba (2007). Appl. Catal. B Environ. 71, 163–168.

    Article  CAS  Google Scholar 

  19. Y. B. Mao and S. S. Wong (2006). J. Am. Chem. Soc. 128, 8217–8226.

    Article  PubMed  CAS  Google Scholar 

  20. W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen (2000). J. Phys. D: Appl. Phys 33, 912–916.

    Article  CAS  Google Scholar 

  21. J. C. Parker and R. W. Siegel (1990). Appl. Phys. Letter 57, 943–945.

    Article  CAS  Google Scholar 

  22. T. Ohsaka, S. Yamaoka, and O. Shimomura (1979). Solid State Commun. 30, 345–347.

    Article  CAS  Google Scholar 

  23. L. Kavan, M. Grtzel, S. E. Gilbert, C. Klemenz, and H. J. Scheel (1996). J. Am. Chem. Soc. 118, 6716–6717.

    Article  CAS  Google Scholar 

  24. V. Abbasi-Chianeh, A. Mohammadzadeh, and N. N. Ilkhechi (2019). Journal of the Australian Ceramic Society 55 (2), 355–362.

    Article  CAS  Google Scholar 

  25. M. Alijani and N. N. Ilkhechi (2018). Silicon. 10 (6), 2569–2575.

    Article  CAS  Google Scholar 

  26. G. Nagaraj, D. Brundha, C. Chandraleka, M. Arulpriya, V. Kowsalya, S. Sangavi, R. Jayalakshmi, S. Tamilarasu, and R. Murugan (2020). SN Applied Sciences. 2, 734.

    Article  CAS  Google Scholar 

  27. G. Nagaraj, A. Dhayal Raj, A. Albert Irudayaraj, R.L.Josephine. Optik,. 2019, 179, 889–894.

  28. V. Etacheri, M. K. Seery, S. J. Hinder, and S. C. Pillai (2011). Adv. Func. Mater. 21, 3744–3752.

    Article  CAS  Google Scholar 

  29. L.-L. Tan, W.-J. Org, S.-P. Chai, and R. S. C. Chem (2014). Commun. 50, 6923–6926.

    CAS  Google Scholar 

  30. V. V. Jadhav, R. S. Dhabbe, S. R. Sabale, G. H. Nikam, and B. V. Tamhankar (2013). Univ. J. Environ. Res. Tech. 6, 667–676.

    Google Scholar 

  31. L. Lv, Q. Chen, X. Liu, M. Wang, and X. Meng (2015). J. Nanopart. Res. 17, 222–224.

    Article  CAS  Google Scholar 

  32. K. Lv, J. Yu, L. Cui, S. Chen, and M. Li (2011). J. Alloys and Comp. 509, 4557–4562.

    Article  CAS  Google Scholar 

  33. J. T. Carneiro, T. J. Savenije, J. A. Moulijn, and G. Mul (2011). J. Phys. Chem. C 115, 2211–2214.

    Article  CAS  Google Scholar 

  34. H. D. Jang and S. K. Kim (2001). J. Nanopart. Res. 3, 141–147.

    Article  CAS  Google Scholar 

  35. T. Kawahara, T. Ozawa, M. Iwasaki, and H. Tada (2003). J. Colloid Inter. Sci. 267, 377–378.

    Article  CAS  Google Scholar 

  36. U. Stafford, K. A. Gray, P. V. Kamat, and A. Varma (1993). Chem. Phys. Lett. 205, 55–61.

    Article  CAS  Google Scholar 

  37. G. Riegel and J. R. Bolton (1995). J. Phys. Chem. 99, 4215–4224.

    Article  CAS  Google Scholar 

  38. G. Nagaraj, A. D. Raj, and A. A. Irudayaraj (2018). J. Mater. Sci.: Mater. Electron. 29, 4373–4381.

    CAS  Google Scholar 

  39. P. Periyat, S. C. Pillai, D. E. McCormack, J. Colreavy, and S. J. Hinder (2008). J. Phys. Chem. C 112, 7644–7652.

    Article  CAS  Google Scholar 

  40. G. Nagaraj, R. A. Senthil, and K. Ravichandran (2019). Materials Research Express 6, 095049.

    Article  CAS  Google Scholar 

  41. T. Yoko, K. Kamiya, and K. Tanaka (1990). J. Mater. Sci. 25, 3922–3929.

    Article  CAS  Google Scholar 

  42. N. N. Ilkhechi, F. Dousi, B. K. Kaleji, and E. Salahi (2014). Opt Quant Electron. 47 (7), 1–13.

    Google Scholar 

  43. N. N. Ilkhechi, B. K. Kaleji, E. Salahi, and N. Hosseinabadi (2015). Journal of sol-gel science and technology. 74 (3), 765–773.

    Article  CAS  Google Scholar 

  44. N.N. Ilkhechi, M. Alijani and B.K. Kaleji, B.K. Optical and quantum electronics. 2016, 48(2),148.

  45. Y. Gao, Y. Masuda, Z. Peng, T. Yonezawa, and K. Koumoto (2003). J. Mater. Chem. 13, 608–613.

    Article  CAS  Google Scholar 

  46. S. A. Gao, A. P. Xian, L. H. CaO, and R. C. Xie (2008). Sens. Actuators B Chem. 134, 718–726.

    Article  CAS  Google Scholar 

  47. N. N. Ilkhechi, M. R. Akbarpour, R. Yavari, and Z. Azar (2017). Journal of Materials Science: Materials in Electronics. 28 (22), 16658–16664.

    Google Scholar 

  48. N. N. Ilkhechi and B. K. Kaleji (2016). Optical and quantum electronics. 48 (7), 347.

    Article  CAS  Google Scholar 

  49. G. Nagaraj and R. A. Senthil (2020). Rajender Boddula, K. Ravichandran. Current Analytical Chemistry 16, 1–6.

    Article  Google Scholar 

  50. G. Nagaraj, D. Brundha, V. Kowsalya, C. Chandraleka, S. Sangavi, R. Jayalakshmi, M. Arulpriya, N. Sathya, M. Prasath and S. Tamilarasu. Materials Today: Proceedings.,2020.

  51. K. S. Ong, Y. L. Cheow, and S. M. Lee (2017). Journal of advanced research 8 (4), 393–398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. M.S. Arif Sher Shah, K. Zhang, A.R. Park, K.S. Kim, N.-G. Park, J.H. Park, P.J. Yoo, Nanoscale, 2013, 5, 5093–5101.

  53. M. Gulluce, F. Sahin, M. Sokmen, H. Ozer, D. Daferera, and A. Sokmen (2007). Food Chem. 103, 1449–1456.

    Article  CAS  Google Scholar 

  54. D. Meng, X. Liu, Y. Xie, Y. Du, Y. Yang, and C. Xiao (2019). Advances in Materials Science and Engineering. 2019, 1–9.

    Google Scholar 

  55. H.M. Yadav, S.V. Otari, V.B. Koli, S.S Mali, C.K. Hong, S.H. Pawar and S.D. Journal of Photochemistry and Photobiology A: Chemistry., 2014, 280, 32–38

Download references

Acknowledgements

The authors thank lab Director Dr. P. Mohana sundram, PG Extension Centre, Periyar University, Dharmapuri-636107, Tamil Nadu, India for providing Lab facility to carry out this work and IITM for helping in characterizing the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nagaraj.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaraj, G., Tamilarasu, S. Visible Light Photocatalyst Anatase Phased TiO2 Nanoparticles for Enhanced Antibacterial Performance. J Clust Sci 32, 1701–1709 (2021). https://doi.org/10.1007/s10876-020-01939-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01939-9

Keywords

Navigation