Skip to main content
Log in

Experimental and Numerical Studies on Dynamic Characteristics of Long-Span Cable-Supported Pipe Systems

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

Cable-supported pipe structure (CSPS) is a system of structure which has improved capacity over conventional elevated pipe structure, in terms of the capacity of span but with limited application owing to insufficient vibration characteristics and performance evidence. The study focuses on experimental modal and updating of the 64.8 m CSPS model to improve the dynamic behavior of the CSPS structure. Three scenarios of 8 m span scaled down CSPS models, which include the single tube pipe system, the double tube pipe system, and the truss spacing modification were evaluated. Comparative assessment of the modal frequencies of modes of the experimental and numerical set shows coupled torsion-lateral responses. The double tube and truss members modifications resulted in an upward shift of all resonating modal frequencies, improving the structural damping. The upward shift of frequencies of mass modification results produces modal assurances of about 100% which are attributed to matching modes with the original mode sets as against the numerical sets. The results of the scaled down models indicate large spans are more vulnerable to resonance considering the reduction of the modal frequencies of the 64.8 m CSPS finite element models. The results were compared with design guidelines and research findings of other Cable-supported structures. It was evident that minimising the vibration of the CSPS structure would prevent excessive deformation of the structure. The pipe and truss members modification provide effective vibration attenuation of the vibration but the CSPS structure would require the use of damping device in severe vibration conditions. Herein lies the limitation of this work as the application of vibration control device are left for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • AISC, A. (2005). 360-Specification for Structural Steel Buildings. American Institute of Steel Construction. In: Inc.

  • Ali, N. B. H., & Smith, I. F. C. (2010). Dynamic behavior and vibration control of a tensegrity structure. International Journal of Solids and Structures, 47(9), 1285–1296.

    Article  Google Scholar 

  • An, Q., Ren, Q., Liu, H., Yan, X., & Chen, Z. (2016). Dynamic performance characteristics of an innovative cable supported beam structure–concrete slab composite floor system under human-induced loads. Engineering Structures, 117, 40–57.

    Article  Google Scholar 

  • Baader, J., & Fontana, M. (2017). Active vibration control of lightweight floor systems. Procedia engineering, 199, 2772–2777.

    Article  Google Scholar 

  • Bachmann, H., Ammann, W. J., Deischl, F., Eisenmann, J., Floegl, I., Hirsch, G. H., et al. (2012). Vibration problems in structures: practical guidelines. Birkhäuser.

  • Ballaben, J. S., Guzmán, A. M., & Rosales, M. B. (2017). Nonlinear dynamics of guyed masts under wind load: Sensitivity to structural parameters and load models. Journal of Wind Engineering and Industrial Aerodynamics, 169, 128–138.

    Article  Google Scholar 

  • Brownjohn, J. M., & Xia, P. Q. (2000). Dynamic assessment of curved cable-stayed bridge by model updating. Journal of structural engineering, 126(2), 252–260.

    Article  Google Scholar 

  • Cai, C. S., Wu, W. J., & Araujo, M. (2007). Cable vibration control with a TMD-MR damper system: experimental exploration. Journal of structural engineering, 133(5), 629–637.

    Article  Google Scholar 

  • Chan, S. L., Shu, G. P., & Lü, Z. T. (2002). Stability analysis and parametric study of pre-stressed stayed columns. Engineering Structures, 24(1), 115–124. https://doi.org/10.1016/S0141-0296(01)00026-8

    Article  Google Scholar 

  • Chen, Z. H., Liu, H. B., Wang, X. D., Zhang, L. P., & Zhao, J. B. (2012). Research on dynamic performance of tensigrity tower. Spatial Structures, 2.

  • Chen, Z. (2010). Suspen-dome Structure. cience Press, Beijing.

  • Christensen, D. A., & McGee, R. D. (2007). U.S. Patent No. 7,229,032. Washington, DC: U.S. Patent and Trademark Office.

  • Cismaşiu, C., Narciso, A. C., & Amarante dos Santos, F. P. (2015). Experimental dynamic characterization and finite-element updating of a footbridge structure. Journal of Performance of Constructed Facilities, 29(4), 04014116.

    Article  Google Scholar 

  • Design, Allowable Stress (1999, December 27). Specification for structural steel buildings. AISC.

  • Eiras, J. N., Payan, C., Rakotonarivo, S., & Garnier, V. (2018). Experimental modal analysis and finite element model updating for structural health monitoring of reinforced concrete radioactive waste packages. Construction and Building Materials, 180, 531–543. https://doi.org/10.1016/j.conbuildmat.2018.06.004

    Article  Google Scholar 

  • Feng, X., Miah, M. S., & Ou, Y. (2018). Dynamic behavior and vibration mitigation of a spatial tensegrity beam. Engineering Structures, 171, 1007–1016.

    Article  Google Scholar 

  • Gasparini, D. A., Perdikaris, P. C., & Kanj, N. (1989). Dynamic and static behavior of cable dome model. Journal of structural engineering, 115(2), 363–381.

    Article  Google Scholar 

  • GB50017–2017. (2017). Code for design of steel structures.

  • Gimsing, N. J., & Georgakis, C. T. (2011). Cable supported bridges: Concept and design. New Jersey: Wiley.

    Book  Google Scholar 

  • Gu, M., Chen, S. R., & Chang, C. C. (2001). Parametric study on multiple tuned mass dampers for buffeting control of Yangpu Bridge. Journal of Wind Engineering and Industrial Aerodynamics, 89(11–12), 987–1000. https://doi.org/10.1016/S0167-6105(01)00094-0

    Article  Google Scholar 

  • Heylen, W., Lammens, S., & Sas, P. (1997). Modal analysis theory and testing (Vol. 200, No. 7). Leuven, Belgium: Katholieke Universiteit Leuven.

  • Huang, M.-H., Thambiratnam, D. P., & Perera, N. J. (2005). Vibration characteristics of shallow suspension bridge with pre-tensioned cables. Engineering Structures, 27(8), 1220–1233. https://doi.org/10.1016/j.engstruct.2005.03.005

    Article  Google Scholar 

  • International Organization for Standardization. (2007). Bases for Design of Structures—serviceability of Buildings and Walkways Against Vibrations. ISO.

  • JGJ 257–2012. (2012). Technical specification for cable structures. Beijing: Ministry of Housing and Urban-Rural Development of the People’s Republic of China. (in Chinese).

  • Kwok, K. C. S., & Samali, B. (1995). Performance of tuned mass dampers under wind loads. Engineering structures, 17(9), 655–667.

    Article  Google Scholar 

  • Lee, H. H. (2018). Finite element simulations with ANSYS Workbench 18. SDC publications.

  • Liao, W. Y., Ni, Y. Q., & Zheng, G. (2012). Tension force and structural parameter identification of bridge cables. Advances in Structural Engineering, 15(6), 983–995.

    Article  Google Scholar 

  • Liu, H., Han, Q., Chen, Z., Wang, X., Yan, R. Z., & Zhao, B. (2014). Precision control method for pre-stressing construction of suspen-dome structures. Advanced Steel Construction, 10(4), 404–425.

    Google Scholar 

  • Maia, N. M. M., & e Silva, J. M. M. . (1997). Theoretical and experimental modal analysis. Somerset: Research Studies Press.

    Google Scholar 

  • Modak, S. (2014). Model updating using uncorrelated modes. Journal of Sound and Vibration, 333(11), 2297–2322.

    Article  Google Scholar 

  • Muria-Vila, D., Gomez, R., & King, C. (1991). Dynamic structural properties of cable-stayed Tampico Bridge. Journal of Structural Engineering, 117(11), 3396–3416. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:11(3396)

    Article  Google Scholar 

  • Pálsson, G. P. (2012). Finite Element Modelling and Updating of Medium Span Road Bridges. Brovej, Building, 118, 2800.

    Google Scholar 

  • Papagiannopoulos, G. A., & Beskos, D. E. (2006). On a modal damping identification model of building structures. Archive of Applied Mechanics, 76(7–8), 443–463.

    Article  Google Scholar 

  • Park, H. S., Kim, Y., & Oh, B. K. (2017). A model updating method with strain measurement from impact test for the safety of steel frame structures. Measurement, 102, 220–229.

    Article  Google Scholar 

  • Pastor, M., Binda, M., & Harčarik, T. (2012). Modal assurance criterion. Procedia Engineering, 48, 543–548.

    Article  Google Scholar 

  • Peeters, B., Van der Auweraer, H., Guillaume, P., & Leuridan, J. (2004). The PolyMAX frequency-domain method: a new standard for modal parameter estimation?. Shock and Vibration, 11(3, 4), 395–409.

  • Peeters, B., & Ventura, C. E. (2003). Comparative study of modal analysis techniques for bridge dynamic characteristics. Mechanical Systems and Signal Processing, 17(5), 965–988. https://doi.org/10.1006/mssp.2002.1568

    Article  Google Scholar 

  • Ren, W. X., Peng, X. L., & Lin, Y. Q. (2005). Experimental and analytical studies on dynamic characteristics of a large span cable-stayed bridge. Engineering Structures, 27(4), 535–548. https://doi.org/10.1016/j.engstruct.2004.11.013

    Article  Google Scholar 

  • Salane, H. J., & Baldwin, J. W., Jr. (1990). Identification of modal properties of bridges. Journal of Structural Engineering, 116(7), 2008–2021.

    Article  Google Scholar 

  • Sinha, J. K. (2014). Vibration analysis, instruments, and signal processing. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Siriwardane, S. C. (2015). Vibration measurement-based simple technique for damage detection of truss bridges: a case study. Case Studies in Engineering Failure Analysis, 4, 50–58. https://doi.org/10.1016/j.csefa.2015.08.001

    Article  Google Scholar 

  • Standard, B. (2005). Eurocode 1: Actions on Structures–Part1-4: General actions-wind actions; BS EN 1991-1-4: 2005. London: British Standard Institution.

    Google Scholar 

  • Sun, G. J., Chen, Z. H., & Longman, R. W. (2013). Numerical and experimental investigation of the dynamic characteristics of cable-supported barrel vault structures. Journal of Mechanics of Materials and Structures, 8(1), 1–13.

    Article  Google Scholar 

  • Trahair, N., & Bradford, M. A. (2017). Behaviour and Design of Steel Structures to AS4100: Australian. Boca Raton: CRC Press.

    Google Scholar 

  • Trahair, N., & Bradford, M. A. (2014). Behaviour and Design of Steel Structures to AS4100: Australian. Boca Raton: CRC Press.

    Google Scholar 

  • Varela, W. D., & Battista, R. C. (2011). Control of vibrations induced by people walking on large span composite floor decks. Engineering Structures, 33(9), 2485–2494.

    Article  Google Scholar 

  • Veritas, D. N. (2008). Structural analysis of piping systems. Det Norske Veritas, Høvik, Norway, Standard No. DNV RP-D101.

  • Wickramasinghe, W. R. (2015). Damage detection in suspension bridges using vibration characteristics (Doctoral dissertation, Queensland University of Technology).

  • Xu, Y. L., & Zhu, L. D. (2005). Buffeting response of long-span cable-supported bridges under skew winds. Part 2: case study. Journal of Sound and Vibration, 281(3–5), 675–697.

    Article  Google Scholar 

  • Xue, W., & Liu, S. (2009). Design optimization and experimental study on beam string structures. Journal of Constructional Steel Research, 65(1), 70–80.

    Article  MathSciNet  Google Scholar 

  • Zhang, J., Prader, J., Grimmelsman, K. A., Moon, F., Aktan, A. E., & Shama, A. (2013). Experimental vibration analysis for structural identification of a long-span suspension bridge. Journal of Engineering Mechanics, 139(6), 748–759.

    Article  Google Scholar 

  • Zhang, P., Ren, L., Li, H., Jia, Z., & Jiang, T. (2015). Control of wind-induced vibration of transmission tower-line system by using a spring pendulum. Mathematical Problems in Engineering, 2015.

  • Zhao, Z., Chen, Z., Wang, X., Hao, X., & Liu, H. (2016). Wind-induced response of large-span structures based on pod-pseudo-excitation method. Advanced Steel Construction, 12(1), 1–16.

    Google Scholar 

Download references

Acknowledgments

This research was sponsored by the National Key Research and Development Program of China (Grant No. 2018YFC0705500, 2018YFC0705504). Their financial supports to the work are recognized and highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin Paul Agwoko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agwoko, M.P., Chen, Z. & Liu, H. Experimental and Numerical Studies on Dynamic Characteristics of Long-Span Cable-Supported Pipe Systems. Int J Steel Struct 21, 274–298 (2021). https://doi.org/10.1007/s13296-020-00438-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-020-00438-x

Keywords

Navigation