Skip to main content
Log in

Leveraging consumer behaviors for product recommendation: an approach based on heterogeneous network

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

Consumer behaviors (e.g., clicking products, adding products to favorites, adding products to carts, and purchasing products) play important roles in inferring consumers’ interests for product recommendation. Although studies have been conducted to incorporate the consumer behaviors for product recommendation, the heterogeneity of the behaviors and their composites were seldom explored for product recommendation. There is a need to capture the heterogeneity of the consumer behaviors and reveal their importance in the product recommendation because the behaviors indicate different consumer preferences for products. To bridge the gap, this research proposes a heterogeneous network-based approach to leverage the consumer behaviors for product recommendation. The proposed approach represents consumers and products as different types of nodes and behaviors as different types of edges. Meta paths that describe behavioral relationships between the consumers and products are used to calculate their similarities, which are further used to generate recommendations. To select informative meta paths for product recommendation, a heuristic selection mechanism is proposed. Besides, the research uses a non-negative matrix factorization method to learn the weights of the selected meta paths and then makes personalized recommendations for consumers. Experimental results based on real-world data demonstrate that the proposed approach not only helps to understand the roles of different consumer behaviors in product recommendation, but also achieves better recommendation performance than several baseline methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. https://tianchi.aliyun.com/dataset/dataDetail?dataId=649.

References

  1. Sun, J., Ying, R., Jiang, Y., He, J., & Ding, Z. (2020). Leveraging friend and group information to improve social recommender system. Electronic Commerce Research, 20(1), 147–172. https://doi.org/10.1007/s10660-019-09390-3.

    Article  Google Scholar 

  2. Zhou, L. (2020). Product advertising recommendation in E-commerce based on deep learning and distributed expression. Electronic Commerce Research, 20(2), 321–342. https://doi.org/10.1007/s10660-020-09411-6.

    Article  Google Scholar 

  3. Wang, Q., Yu, J., & Deng, W. (2019). An adjustable re-ranking approach for improving the individual and aggregate diversities of product recommendations. Electronic Commerce Research, 19(1), 59–79. https://doi.org/10.1007/s10660-018-09325-4.

    Article  Google Scholar 

  4. Mishra, R., Kumar, P., & Bhasker, B. (2015). A web recommendation system considering sequential information. Decision Support Systems, 75, 1–10. https://doi.org/10.1016/j.dss.2015.04.004.

    Article  Google Scholar 

  5. Wang, J., Huang, P., Zhao, H., Zhang, Z., Zhao, B., & Lee, D. L. (2018). Billion-scale commodity embedding for E-commerce recommendation in Alibaba. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 839–848). New York, NY: ACM. https://doi.org/10.1145/3219819.3219869.

  6. Wang, Q., Ma, J., Liao, X., & Du, W. (2017). A context-aware researcher recommendation system for university-industry collaboration on R&D projects. Decision Support Systems, 103, 46–57. https://doi.org/10.1016/j.dss.2017.09.001.

    Article  Google Scholar 

  7. Xu, Y., Zhou, D., & Ma, J. (2019). Scholar-friend recommendation in online academic communities: An approach based on heterogeneous network. Decision Support Systems, 119, 1–13. https://doi.org/10.1016/j.dss.2019.01.004.

    Article  Google Scholar 

  8. Kang, D., & Seo, S. (2019). Personalized smart home audio system with automatic music selection based on emotion. Multimedia Tools and Applications, 78(3), 3267–3276. https://doi.org/10.1007/s11042-018-6733-7.

    Article  Google Scholar 

  9. Oramas, S., Ostuni, V. C., Noia, T. D., Serra, X., & Sciascio, E. D. (2016). Sound and music recommendation with knowledge graphs. ACM Transactions on Intelligent Systems and Technology, 8(2), 21:1–21:21. https://doi.org/10.1145/2926718.

    Article  Google Scholar 

  10. Xu, W., Sun, J., Ma, J., & Du, W. (2016). A personalized information recommendation system for R&D project opportunity finding in big data contexts. Journal of Network and Computer Applications, 59, 362–369. https://doi.org/10.1016/j.jnca.2015.01.003.

    Article  Google Scholar 

  11. Liu, Y., Yang, C., Ma, J., Xu, W., & Hua, Z. (2019). A social recommendation system for academic collaboration in undergraduate research. Expert Systems, 36(2), e12365. https://doi.org/10.1111/exsy.12365.

    Article  Google Scholar 

  12. Castro, J., Quesada, F. J., Palomares, I., & Martínez, L. (2015). A consensus-driven group recommender system. International Journal of Intelligent Systems, 30(8), 887–906. https://doi.org/10.1002/int.21730.

    Article  Google Scholar 

  13. Castro, J., Barranco, M. J., Rodríguez, R. M., & Martínez, L. (2018). Group recommendations based on hesitant fuzzy sets. International Journal of Intelligent Systems, 33(10), 2058–2077. https://doi.org/10.1002/int.21922.

    Article  Google Scholar 

  14. Pourgholamali, F., Kahani, M., Bagheri, E., & Noorian, Z. (2017). Embedding unstructured side information in product recommendation. Electronic Commerce Research and Applications, 25, 70–85. https://doi.org/10.1016/j.elerap.2017.08.001.

    Article  Google Scholar 

  15. Zhang, J., & Piramuthu, S. (2018). Product recommendation with latent review topics. Information Systems Frontiers, 20(3), 617–625. https://doi.org/10.1007/s10796-016-9697-z.

    Article  Google Scholar 

  16. Zhang, M., Wei, X., Guo, X., Chen, G., & Wei, Q. (2019). Identifying complements and substitutes of products: A neural network framework based on product embedding. ACM Transactions on Knowledge Discovery from Data, 13(3), 34:1–34:29. https://doi.org/10.1145/3320277.

    Article  Google Scholar 

  17. Jing, N., Jiang, T., Du, J., & Sugumaran, V. (2018). Personalized recommendation based on customer preference mining and sentiment assessment from a Chinese e-commerce website. Electronic Commerce Research, 18(1), 159–179. https://doi.org/10.1007/s10660-017-9275-6.

    Article  Google Scholar 

  18. Sun, L., Guo, J., & Zhu, Y. (2018). A multi-aspect user-interest model based on sentiment analysis and uncertainty theory for recommender systems. Electronic Commerce Research. https://doi.org/10.1007/s10660-018-9319-6.

    Article  Google Scholar 

  19. Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7(1), 76–80. https://doi.org/10.1109/MIC.2003.1167344.

    Article  Google Scholar 

  20. Jia, R., Li, R., Yu, M., & Wang, S. (2017). E-commerce purchase prediction approach by user behavior data. In 2017 international conference on computer, information and telecommunication systems (CITS) (pp. 1–5). https://doi.org/10.1109/CITS.2017.8035294.

  21. Hidasi, B., Karatzoglou, A., Baltrunas, L., & Tikk, D. (2016). Session-based recommendations with recurrent neural networks. arXiv:1511.06939 [cs]. Retrieved from http://arxiv.org/abs/1511.06939.

  22. Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., & Tan, T. (2019). Session-based recommendation with graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, 33(01), 346–353. https://doi.org/10.1609/aaai.v33i01.3301346.

  23. Wei, X., Zuo, X., & Yang, B. (2019). Sequential recommendation based on long-term and short-term user behavior with self-attention. In C. Douligeris, D. Karagiannis & D. Apostolou (Eds.), Knowledge science engineering and management (pp. 72–83). Cham: Springer. https://doi.org/10.1007/978-3-030-29551-6_7.

    Chapter  Google Scholar 

  24. Shi, C., Hu, B., Zhao, W. X., & Yu, P. S. (2019). Heterogeneous information network embedding for recommendation. IEEE Transactions on Knowledge and Data Engineering, 31(2), 357–370. https://doi.org/10.1109/TKDE.2018.2833443.

    Article  Google Scholar 

  25. Yu, J., Gao, M., Li, J., Yin, H., & Liu, H. (2018). Adaptive implicit friends identification over heterogeneous network for social recommendation. In Proceedings of the 27th ACM international conference on information and knowledge management (pp. 357–366). Torino: Association for Computing Machinery. https://doi.org/10.1145/3269206.3271725.

  26. He, X., Dong, Y., Zhen, Z., Wu, Y., Jiang, G., Meng, X., & Ma, S. (2019). Weighted meta paths and networking embedding for patent technology trade recommendations among subjects. Knowledge-Based Systems, 184, 104899. https://doi.org/10.1016/j.knosys.2019.104899.

    Article  Google Scholar 

  27. DENG, W., & Ma, J. (2017). Leveraging heterogeneous information network for community recommendation. In ICIS 2017 proceedings. Retrieved from http://aisel.aisnet.org/icis2017/HCI/Presentations/4.

  28. Hu, L., Wang, Y., Xie, Z., & Wang, F. (2017). Semantic preference-based personalized recommendation on heterogeneous information network. IEEE Access : Practical Innovations, Open Solutions, 5, 19773–19781. https://doi.org/10.1109/ACCESS.2017.2751682.

    Article  Google Scholar 

  29. Wang, Q., Du, W., Ma, J., & Liao, X. (2019). Recommendation mechanism for patent trading empowered by heterogeneous information networks. International Journal of Electronic Commerce, 23(2), 147–178. https://doi.org/10.1080/10864415.2018.1564549.

    Article  Google Scholar 

  30. Shi, C., Li, Y., Zhang, J., Sun, Y., & Yu, P. S. (2017). A survey of hinformation network analysis. IEEE Transactions on Knowledge and Data Engineering, 29(1), 17–37. https://doi.org/10.1109/TKDE.2016.2598561.

    Article  Google Scholar 

  31. Sun, Y., Han, J., Yan, X., Yu, P. S., & Wu, T. (2011). PathSim: Meta path-based top-k similarity search in heterogeneous information networks. In Proceedings of the 2011 international conference on very large data bases (VLDB’11).

  32. Liu, H., Jiang, Z., Song, Y., Zhang, T., & Wu, Z. (2019). User preference modeling based on meta paths and diversity regularization in heterogeneous information networks. Knowledge-Based Systems, 181, 104784. https://doi.org/10.1016/j.knosys.2019.05.027.

    Article  Google Scholar 

  33. Lao, N., & Cohen, W. W. (2010). Fast query execution for retrieval models based on path-constrained random walks. In Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 881–888). New York, NY: ACM. https://doi.org/10.1145/1835804.1835916.

  34. Shi, C., Kong, X., Huang, Y., Yu, P. S., & Wu, B. (2014). HeteSim: a general framework for relevance measure in heterogeneous networks. IEEE Transactions on Knowledge and Data Engineering, 26(10), 2479–2492. https://doi.org/10.1109/TKDE.2013.2297920.

    Article  Google Scholar 

  35. Meng, X., Shi, C., Li, Y., Zhang, L., & Wu, B. (2014). Relevance measure in large-scale heterogeneous networks. In Web technologies and applications (pp. 636–643). Presented at the Asia-Pacific web conference. Cham: Springer. https://doi.org/10.1007/978-3-319-11116-2_61.

  36. Lin, C.-J. (2007). Projected gradient methods for nonnegative matrix factorization. Neural Computation, 19(10), 2756–2779. https://doi.org/10.1162/neco.2007.19.10.2756.

    Article  Google Scholar 

  37. Shani, G., & Gunawardana, A. (2011). Evaluating recommendation systems. In F. Ricci, L. Rokach, B. Shapira & P. B. Kantor (Eds.), Recommender systems handbook (pp. 257–297). Boston: Springer. https://doi.org/10.1007/978-0-387-85820-3_8.

    Chapter  Google Scholar 

  38. Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. IEEE Computer Society, 42–49.

  39. Cooper, C., Lee, S. H., Radzik, T., & Siantos, Y. (2014). Random walks in recommender systems: exact computation and simulations. In Proceedings of the 23rd international conference on world wide web (pp. 811–816). New York, NY: ACM. https://doi.org/10.1145/2567948.2579244.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Deng.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, W. Leveraging consumer behaviors for product recommendation: an approach based on heterogeneous network. Electron Commer Res 22, 1079–1105 (2022). https://doi.org/10.1007/s10660-020-09441-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-020-09441-0

Keywords

Navigation