Skip to main content

Advertisement

Log in

Highly Transparent and Colorless Polyimide Film with Low Dielectric Constant by Introducing Meta-substituted Structure and Trifluoromethyl Groups

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

An effective design strategy for preparing highly transparent polyimide film with low dielectric constant is presented. The key to the strategy is to simultaneously introduce meta-substituted structure and trifluoromethyl in polymer chains. By using this design strategy, a highly transparent polyimide film with low-k was synthesized from 3,5-diaminobenzotrifluoride (m-TFPDA) and 4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) through a two-step method. The obtained m-TFPDA/6FDA (CPI) film (∼30 µm) possesses high optical transparency (λcutoff=334 nm, T450nm=85.26%, Haze=0.31) and is close to colorless (L*=96.03, a*=−0.34, b*=2.12, yellow index=3.96). The intrinsic k and dielectric loss value of the film are 2.27 and 0.0013 at 10 kHz, respectively. More importantly, such low dielectric performance could remain stable up to 280 °C, and the film shows a low moisture rate (∼0.51%), which helps to maintain the low-k property stability in different humid environments. Meanwhile, the film also shows good thermal stability and mechanical properties, with a glass transition temperature (Tg) of 296 °C and the 5 wt% decomposition temperature (Td,5%) of 522 °C under N2. The tensile strength and tensile modulus of the film are 85.1 MPa and 1.96 GPa, respectively. In addition, the film is soluble in common solvents, which allows simple solution processing and low-cost, continuous roll-to-roll processes. This design strategy is beneficial to improving the transparency, lightening yellow color, lowering the dielectric constant and meanwhile maintaining the comprehensive properties of polyimide films, which is mainly due to the introduced meta-substituted and trifluoromethyl structures effectively inhibiting the transfer of charge transfer complex (CTC) effects and increasing the free volume of film. This design strategy could also be extended to other high-performance polymer systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, D. H.; Yun, H. D.; Jung, E. D.; Chu, J. H.; Nam, Y. S. Song, S.; Seok, S. H.; Song, M. H. Kwon, S. Y. Ultrathin graphene intercalation in PEDOT:PSS/colorless polyimide-based transparent electrodes for enhancement of optoelectronic performance and operational stability of organic devices. ACS Appl. Mater. Interfaces 2019, 11, 21069–21077.

    Article  CAS  Google Scholar 

  2. Yin, X. D.; Feng, Y. Y.; Zhao, Q.; Li, Y.; Li, S. W.; Dong, H. L.; Hu, W. P.; Feng, W. A. A highly transparent, strong, and flexible fluorographene/fluorinated polyimide nanocomposite film with low dielectric constant. J. Mater. Chem. C 2018, 6, 6378–6384.

    Article  CAS  Google Scholar 

  3. Kim, S. D.; Lee, B.; Byun, T.; Chung, I. S.; Park, J.; Shin, I.; Ahn, N. Y.; Seo, M.; Lee, Y.; Kim, Y.; Kim, W. Y.; Kwon, H.; Moon, H.; Yoo, S.; Kim, S. Y. Poly(amide-imide) materials for transparent and flexible displays. Sci. Adv. 2018, 4, eaau1956.

    Article  CAS  Google Scholar 

  4. Li, T. L.; Hsu, S. L. C. Preparation and properties of a high temperature, flexible and colorless ITO coated polyimide substrate. Eur. Polym. J. 2007, 43, 3368–3373.

    Article  CAS  Google Scholar 

  5. Kang, S. B.; Kim, H. J.; Noh, Y. J.; Na, S. I.; Kim, H. K. Face-to-face transferred multicrystalline ITO films on colorless polyimide substrates for flexible organic solar cells. Nano Energy 2015, 11, 179–188.

    Article  CAS  Google Scholar 

  6. Bai, L.; Zhai, L.; Hea, M. H.; Wang, C. O.; Mo, S.; Fan, L. Thermal expansion behavior of poly(amide-imide) films with ultrahigh tensile strength and ultralow CTE. Chinese J. Polym. Sci. 2020, 38, 748–758.

    Article  CAS  Google Scholar 

  7. Kashiyama, Y.; He, J. H.; Machida, S.; Horie, K. Large photoinduced refractive index change in a polyimide film by charge-transfer complex formation with a polymer-bound phenylazide fragment. Macromol. Rapid Commun. 2001, 22, 185–188.

    Article  CAS  Google Scholar 

  8. Ishida, H.; Wellinghoff, S. T.; Baer, E.; Koenig, J. Spectroscopic studies of poly [N,N′-bis(phenoxyphenyl) pyromellitimide]. 1. Structures of the polyimide and three model compounds. Macromolecules 1980, 13, 826–834.

    Article  CAS  Google Scholar 

  9. Zhang, Q.; Tsai, C. Y.; Li, L. J.; Liaw, D. J. Colorless-to-colorful switching electrochromic polyimides with very high contrast ratio. Nat. Commun. 2019, 10, 1239.

    Article  Google Scholar 

  10. Kim, M.; Ryu, T. I.; Ok, K. H.; Kwak, M. G.; Park, S.; Park, N. G.; Han, C. J.; Kim, B. S.; Ko, M. J.; Son, H. J.; Kim, J. W. Transparent electronics: inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells. Adv. Funct. Mater. 2015, 25, 4580–4589.

    Article  CAS  Google Scholar 

  11. Jang, J. H.; Cueva, G.; Hoke, W. E.; Lemonias, P. J.; Fay, P.; Adesida, I. Metamorphic graded bandgap InGaAs-InGaAlAs-InAlAs double heterojunction P-i-I-N photodiodes. J. Lightwave. Technol. 2002, 20, 507–514.

    Article  CAS  Google Scholar 

  12. Ni, H. J.; Liu, J. G.; Wang, Z. H.; Yang, S. Y. A review on colorless and optically transparent polyimide films: chemistry, process and engineering applications. J. Ind. Eng. Chem. 2015, 28, 16–27.

    Article  CAS  Google Scholar 

  13. Mi, Z. M.; Liu, Z. X.; Yao, J. N.; Wang, C. B.; Zhou, C. J.; Wang, D. M.; Zhao, X. G.; Zhou, H. W.; Zhang, Y. M.; Chen, C. H. Transparent and soluble polyimide films from 1,4:3,6-dianhydro-D-mannitol based dianhydride and diamines containing aromatic and semiaromatic units: preparation, characterization, thermal and mechanical properties. Polym. Degrad. Stab. 2018, 151, 80–89.

    Article  CAS  Google Scholar 

  14. Li, F.; Shen, J. L.; Liu, X. F.; Cao, Z. H.; Cai, X.; Li, J. L.; Ding, K.; Liu, J. K.; Tu, G. L. Flexible QLED and OPV based on transparent polyimide substrate with rigid alicyclic asymmetric isomer. Org. Electron. 2017, 51, 54–61.

    Article  CAS  Google Scholar 

  15. Zhai, L.; Yang, S. Y.; Fan, L. Preparation and characterization of highly transparent and colorless semi-aromatic polyimide films derived from alicyclic dianhydride and aromatic diamines. Polymer 2012, 53, 3529–3539.

    Article  CAS  Google Scholar 

  16. Yeo, H.; Goh, M.; Ku, B. C.; You, N. H. Synthesis and characterization of highly-fluorinated colorless polyimides derived from 4,4′-((perfluoro-[1,1′-biphenyl]-4,4′-diyl)bis(oxy))-bis(2,6-dimethylaniline) and aromatic dianhydrides. Poylymer 2015, 76, 280–286.

    Article  CAS  Google Scholar 

  17. Jia, M. C.; Zhou, M. T.; Li, Y. J.; Lu, G. L.; Huang, X. Y. Construction of semi-fluorinated polyimides with perfluorocyclobutyl aryl ether-based side chains. Polym. Chem. 2018, 9, 920–930.

    Article  CAS  Google Scholar 

  18. Sato, S.; Ichikawa, M.; Suzuki, E.; Matsumoto, M.; Nagai, K. Photoelectric properties of ABA-type triblock copolymers designed using fluorine-containing polyimide macroinitiators with polyhedral oligomeric silsesquioxane. Polym. Eng. Sci. 2017, 57, 1207–1213.

    CAS  Google Scholar 

  19. Zhuang, Y. B.; Seong, J. G.; Lee, Y. M. Polyimides containing aliphatic/alicyclic segments in the main chains. Prog. Polym. Sci. 2019, 92, 35–88.

    Article  CAS  Google Scholar 

  20. Nawaz, H.; Akhter, Z.; Iqbal, N. Study of physicochemical properties of meta and ortho trifluoromethyl substituted isomeric aromatic polyimides. Polym. Bull. 2017, 74, 3889–3906.

    Article  CAS  Google Scholar 

  21. Lee, C. W.; Kwak, S. M.; Yoon, T. H. Synthesis and characterization of polyimides from bis(3-aminophenyl)-2,3,5,6-tetrafluoro-4-trifluoromethylphenyl phosphine oxide (mDA7FPPO). Polymer 2006, 47, 4140–4147.

    Article  CAS  Google Scholar 

  22. Bong, S.; Yeo, H.; Ku, B. C.; Goh, M.; You, N. H. Highly soluble polyimide based on asymmetric diamines containing trifluoromethyl group for high performance dielectric material. Macromol. Res. 2018, 26, 85–91.

    Article  CAS  Google Scholar 

  23. Wang, C. Y.; Zhao, X. Y.; Li, G.; Jiang, J. M. High solubility and optical transparency of novel polyimides containing 3,3′,5,5′-tetramethyl pendant groups and 4-tert-butyltoluene moiety. Polym. Degrad. Stab. 2009, 94, 1526–1532.

    Article  CAS  Google Scholar 

  24. Qian, C.; Bei, R. X.; Zhu, T. W.; Zheng, W. W.; Liu, S. W.; Chi, Z. G.; Aldred, M. P.; Chen, X. D.; Zhang, Y.; Xu, J. R. Facile strategy for intrinsic Low-k dielectric polymers: molecular design based on secondary relaxation behavior. Macromolecules 2019, 52, 4601–4609.

    Article  CAS  Google Scholar 

  25. Li, X. T.; Liu, T.; Jiao, Y. Z.; Dong, J.; Gan, F.; Zhao, X.; Zhang, Q. H. Novel high-performance poly(benzoxazole-co-imide) resins with low dielectric constants and superior thermal stabilities derived from thermal rearrangement of ortho-hydroxy polyimide oligomers. Chem. Eng. J. 2019, 359, 641–651.

    Article  CAS  Google Scholar 

  26. Amin, M.; Samy, H.; Küpper, J. Robust and accurate computational estimation of the polarizability tensors of macromolecules. J. Phys. Chem. Lett. 2019, 10, 2938–2943.

    Article  CAS  Google Scholar 

  27. Yu, S. Z.; Wong, T. K. S.; Hu, X.; Pita, K. Synthesis and characterization of porous silsesquioxane dielectric films. Thin Solid Films 2005, 473, 191–195.

    Article  CAS  Google Scholar 

  28. Liu, Y. W.; Qian, C.; Qu, L. J.; Wu, Y. N.; Zhang, Y.; Wu, X. H.; Zou, B. Y.; Chen, W. X.; Chen, Z. Q.; Chi, Z. G.; Liu, S. W.; Oigiviy, L. Y.; Xu, J. R. A bulk dielectric polymer film with intrinsic ultralow dielectric constant and outstanding comprehensive properties. Chem. Mater. 2015, 27, 6543–6549.

    Article  CAS  Google Scholar 

  29. Chern, Y. T.; Tsai, J. Y. Low dielectric constant and high organosolubility of novel polyimide derived from unsymmetric 1,4-bis(4-aminophenoxy)-2,6-di-tert-butylbenzene. Macromolecules 2008, 41, 9556–9564.

    Article  CAS  Google Scholar 

  30. Chen, W. X.; Zhou, Z. X.; Yang, T. T.; Bei, R. X.; Zhang, Y.; Liu, S. W.; Chi, Z. G.; Chen, X. D.; Xu, J. R. Synthesis and properties of highly organosoluble and low dielectric constant polyimides containing non-polar bulky triphenyl methane moiety. React. Funct. Polym. 2016, 108, 71–77.

    Article  CAS  Google Scholar 

  31. Liu, Y. W.; Tang, L. S.; Qu, L. J.; Liu, S. W.; Chi, Z. G.; Zhang, Y.; Xu, J. R. Synthesis and properties of high-performance functional polyimides containing rigid nonplanar conjugated fluorene moieties. Chinese J. Polym. Sci. 2019, 37, 416–427.

    Article  CAS  Google Scholar 

  32. Liu, Y. W.; Zhou, Z. X.; Qu, L. J.; Zou, B.; Chen, Z. Q.; Zhang, Y., Liu, S. W.; Chi, Z. G.; Chen, X. D.; Xu, J. R. Exceptionally thermostable and soluble aromatic polyimides with special characteristics: intrinsic ultralow dielectric constant, static random access memory behaviors, transparency and fluorescence. Mater. Chem. Front. 2017, 1, 326–337.

    Article  CAS  Google Scholar 

  33. Yang, H.; Cheng, X. P.; Cheng, X. X.; Pan, F. S.; Wu, H.; Liu, G. H.; Song, Y. M.; Cao, X. Z.; Jiang, Z. Y. Highly water-selective membranes based on hollow covalent organic frameworks with fast transport pathways. J. Membr. Sci. 2018, 565, 331–341.

    Article  CAS  Google Scholar 

  34. Liu, H.; Zhai, L.; Bai, L.; He, M. H.; Wang, C. O.; Mo, S.; Fan, L. Synthesis and characterization of optically transparent semi-aromatic polyimide films with low fluorine content. Polymer 2019, 163, 106–114.

    Article  CAS  Google Scholar 

  35. Tao, S. J. Positronium annihilation in molecular substances. J. Chem. Phys. 1972, 56, 5499–5510.

    Article  CAS  Google Scholar 

  36. Dlubek, G.; Stejny, J.; Alam, M. A. Effect of cross-linking on the free-volume properties of diethylene glycol bis(allyl carbonate) polymer networks: a positron annihilation lifletime study. Macromolecules 1998, 31, 4574–4580.

    Article  CAS  Google Scholar 

  37. Eldrup, M. M.; Lightbody, D.; Sherwood, J. N. The temperature dependence of positron lifetimes in solid pivalic acid. Phys. Chem. Chem. Phys. 1981, 63, 51–58.

    CAS  Google Scholar 

  38. Ghaemy, M.; Berenjestanaki, F. R.; Bazzar, M. Organosoluble, thermally stable and low dielectric constant fluorinated polyimides containing 2,4,5-triphenylimidazole moiety in the main chains. Des. Monomers Polym. 2014, 17, 101–110.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Scientific Research Innovation Plan of Shanghai Education Commission (No. 2019-01-07-00-03-E00001), the National Natural Science Foundation of China (Nos. 21774019, 21975040, and 51903038), the Program of Shanghai Academic Research Leader (No. 18XD1400100), the Natural Science Foundation of Shanghai (No. 18ZR1400600) and the DHU Distinguished Young Professor Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Zhao or Qing-Hua Zhang.

Electronic Supplementary Information

10118_2021_2514_MOESM1_ESM.pdf

Highly Transparent and Colorless Polyimide Film with Low Dielectric Constant by Introducing Meta-substituted Structure and Trifluoromethyl Groups

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, HT., Gan, F., Dong, J. et al. Highly Transparent and Colorless Polyimide Film with Low Dielectric Constant by Introducing Meta-substituted Structure and Trifluoromethyl Groups. Chin J Polym Sci 39, 455–464 (2021). https://doi.org/10.1007/s10118-021-2514-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2514-2

Keywords

Navigation