Skip to main content
Log in

Genome-wide analysis of Hsp70 and Hsp100 gene families in Ziziphus jujuba

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

The Ziziphus species are naturally tolerant to a range of abiotic stresses. Therefore, it is expected that they are an enriched source of genes conferring stress tolerance. Heat shock proteins (Hsps) play a significant role in plants in imparting tolerance against abiotic stress conditions. To get an insight into potential Hsp function in Ziziphus, we performed a genome-wide analysis and expression study of Hsp70 and Hsp100 gene families in Ziziphus jujuba. We identified 21 and 6 genes of the ZjHsp70 and ZjHsp100 families, respectively. Physiochemical properties, chromosomal location, gene structure, motifs, and protein domain organization were analysed for structural and functional characterization. We identified the contribution of tandem and segmental gene duplications in expansions of ZjHsp70s and ZjHsp100s in Z. jujuba. Promoter analysis suggested that ZjHsp70s and ZjHsp100s perform diverse functions related to abiotic stress. Furthermore, expression analyses revealed that most of the Z. jujuba Hsp genes are differentially expressed in response to heat, drought, and salinity stress. Our analyses suggested ZjHsp70-3, ZjHsp70-5, ZjHsp70-6, ZjHsp70-16, ZjHsp70-17, ZjHsp70-20, ZjHsp100-1, ZjHsp100-2, and ZjHsp100-3 are potential candidates for further functional analysis and with regard to breeding new more resilient strains. The present analysis laid the foundation for understanding the molecular mechanism of Hsps70 and Hsp100 gene families regulating abiotic stress tolerance in Z. jujuba.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bailey TL, Elkan C (1995) The value of prior knowledge in discovering motifs with MEME. Proc Int Conf Intell Syst Mol Bio l3:21-29

  • Barbazuk WB, Fu Y, McGinnis KM (2008) Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res 18:1381–1392

    Article  CAS  PubMed  Google Scholar 

  • Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–244

    Article  CAS  PubMed  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaudhary R, Baranwal VK, Kumar R, Sircar D, Chauhan H (2019) Genome-wide identification and expression analysis of Hsp70, Hsp90, and Hsp100 heat shock protein genes in barley under stress conditions and reproductive development. Funct Integr Genomics 19:1007–1022

    Article  CAS  PubMed  Google Scholar 

  • Corrales AR, Nebauer SG, Carrillo L, Fernández-Nohales P, Marqués J, Renau-Morata B, Granell A, Pollmann S, Vicente-Carbajosa J, Molina RV, Medina J (2014) Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. J Exp Bot 65(4):995–1012

    Article  CAS  PubMed  Google Scholar 

  • Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nature Climate Change 2:491-496

  • Da Maia LC, Palmieri DA, de Souza VQ, Kopp MM, de Carvalho FIF, Costa de Oliveira A (2008) SSR Locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int J Plant Genomics 412696

  • Deng Z, Chen J, Wei Y, Liu H, Yang H, Dai L, Li D (2018) Two translationally controlled tumor protein (TCTP) genes from Hevea brasiliensis play overlapping and different roles in development and stress response. Ind Crop Prod 114:137–145

    Article  CAS  Google Scholar 

  • Dragovic Z, Broadley SA, Shomura Y, Bracher A, Hartl FU (2006) Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J 25:2519–2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan YH, Guo J, Ding K, Wang SJ, Zhang H, Dai XW, Chen YY, Govers F, Huang LL, Kang ZS (2011) Characterization of a wheat HSP70 gene and its expression in response to stripe rust infection and abiotic stresses. Mol Biol Rep 38(1):301–307

    Article  CAS  PubMed  Google Scholar 

  • Fujimori S, Washio T, Higo K, Ohtomo Y, Murakami K, Matsubara K, Kawai J, Carninci P, Hayashizaki Y, Kikuchi S, Tomita M (2003) A novel feature of microsatellites in plants: a distribution gradient along the direction of transcription. FebsLett 554:17–22

    Article  CAS  Google Scholar 

  • Gao C, Tang Z, Yin J, An Z, Fu D, Li J (2011) Characterization and comparison of gene-based simple sequence repeats across Brassica species. Mol Gen Genomics 286:161–170

    Article  CAS  Google Scholar 

  • Garg VK, Avashthi H, Tiwari A, Jain PA, Ramkete PW, Kayastha AM, Singh VK (2016) MFPPI–multi FASTA ProtParam interface. Bioinformation 12:74–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Diaz H, Perez-castillo Y, Podda G, Uriarte E (2007) Computational chemistry comparison of stable/nonstable protein mutants classification models based on 3D and topological indices. J Comput Chem 28:1990–1995

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Zhai YF, Lu JP, Chai L, Chai WG, Gong ZH, Lu MH (2014) Characterization of CaHsp70-1, a pepper heat-shock protein gene in response to heat stress and some regulation exogenous substances in Capsicum annuum L. Int J Mol Sci 15:19741–19759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hong SW, Vierling E (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci 97:4392–4397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong CP, Piao ZY, Kang TW, Batley J, Yang TJ, Hur YK, Bhak J, Park BS, Edwards D, Lim YP (2007) Genomic distribution of simple sequence repeats in Brassica rapa. Mol Cell 23:349–356

    CAS  Google Scholar 

  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    Article  PubMed  Google Scholar 

  • Huang Y, Li MY, Wang F, Xu ZS, Huang W, Wang GL, Ma J, Xiong AS (2015) Heat shock factors in carrot: genome-wide identification, classification, and expression profiles response to abiotic stress. Mol Biol Rep 42:893–905

    Article  CAS  PubMed  Google Scholar 

  • Jha UC, Bohra A, Singh NP (2014) Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed 133:679–701

    Article  Google Scholar 

  • Jung KH, Gho HJ, Nguyen MX, Kim SR, An G (2013) Genome-wide expression analysis of HSP70 family genes in rice and identification of a cytosolic HSP70 gene highly induced under heat stress. Funct Integr Genomics 13:391–402

    Article  CAS  PubMed  Google Scholar 

  • Katiyar-Agarwal S, Agarwal M, Grover A (2003) Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol Biol 51:677–686

    Article  CAS  PubMed  Google Scholar 

  • Khan SU, Waqas H, Shehzad SA, Imran M (2019) Theoretical analysis of tangent hyperbolic nanoparticles with combined electrical MHD, activation energy and Wu’s slip features: a mathematical model. Phys Scr 94:125211

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lawson MJ, Zhang L (2006) Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes. Genome Biol 7:R14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee U, Rioflorido I, Hong SW, Larkindale J, Waters ER, Vierling E (2007) The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development. Plant J 49:115–127

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:D302–D305

    Article  CAS  PubMed  Google Scholar 

  • Li H, Liu SS, Yi CY, Wang F, Zhou J, Xia XJ et al (2014) Hydrogen peroxide mediates abscisic acid-induced HSP 70 accumulation and heat tolerance in grafted cucumber plants. Plant Cell Environ 37:2768–2780

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Long R, Zhang T, Wang Z, Zhang F, Yang Q et al (2017) Molecular cloning and functional analysis of the drought tolerance gene MsHSP70 from alfalfa (Medicago sativa L.). J Plant Res 130:387–396

    Article  CAS  PubMed  Google Scholar 

  • Lin BL, Wang JS, Liu HC, Chen RW, Meyer Y, Barakat A, Delseny M (2001) Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones 6:201–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin MY, Chai KH, Ko SS, Kuang LY, Lur HS, Charng YY (2014) A positive feedback loop between heat shock protein101 and heat stress-associated 32-kd protein modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties. Plant Physiol 164:2045–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Willmund F, Golecki JR, Cacace S, He B, Markert C, Schroda M (2007) The chloroplast HSP70B-CDJ2-CGE1 chaperones catalyse assembly and disassembly of VIPP1 oligomers in Chlamydomonas. Plant J 50:265–277

    Article  CAS  PubMed  Google Scholar 

  • Liu MJ, Zhao J, Cai QL, Liu GC, Wang JR, Zhao ZH et al (2014) The complex jujube genome provides insights into fruit tree biology. Nat Commun 5:1–12

    Google Scholar 

  • Liu J, Pang X, Cheng Y, Yin Y, Zhang Q, Su W et al (2018) The Hsp70 gene family in Solanum tuberosum: genome-wide identification, phylogeny, and expression patterns. Sci Rep 8:1–11

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25: 402-408

  • Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci 102:5454–5459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maimbo M, Ohnishi K, Hikichi Y, Yoshioka H, Kiba A (2007) Induction of a small heat shock protein and its functional roles in Nicotiana plants in the defense response against Ralstonia solanacearum. Plant Physiol 145:1588–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra RC, Grover A (2016) ClpB/Hsp100 proteins and heat stress tolerance in plants. Crit Rev Biotechnol 36:862–874

    Article  CAS  PubMed  Google Scholar 

  • Moe KT, Chung JW, Cho YI, Moon JK, Ku JH, Jung JK, Lee J, Park YJ (2011) Sequence information on simple sequence repeats and single nucleotide polymorphisms through transcriptome analysis of mungbean. J Integr Plant Biol 53:63–73

    Article  CAS  PubMed  Google Scholar 

  • Mulaudzi-Masuku T, Mutepe RD, Mukhoro OC, Faro A, Ndimba B (2015) Identification and characterization of a heat-inducible Hsp70 gene from Sorghum bicolor which confers tolerance to thermal stress. Cell Stress Chaperones 20:793–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mustafiz A, Kumari S, Karan R (2016) Ascribing functions to genes: journey towards genetic improvement of rice via functional genomics. Curr Genomics 17:155–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieto-Sotelo J, Martinez LM, Ponce G, Cassab GI, Alagon A, Meeley RB et al (2002) Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth. Plant Cell 14:1621–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noel LD, Cagna G, Stuttmann J, Wirthmüller L, Betsuyaku S, Witte CP, Bhat R, Pochon N, Colby T, Parker JE (2007) Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. Plant Cell 19:4061–4076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Outlaw WH, Zhang S, Riddle KA, Womble AK, Anderson LC, Outlaw WM et al (2002) The jujube (Ziziphusjujuba Mill.), a multipurpose plant. Econ Bot 56:198–200

    Article  Google Scholar 

  • Padaria JC, Yadav R, Tarafdar A, Lone SA, Kumar K, Sivalingam PN (2016) Molecular cloning and characterization of drought stress responsive abscisic acid-stress-ripening (Asr1) gene from wild jujube, Ziziphus nummularia (Burm. f.) Wight & Arn. Mol Biol Rep 43:849–859

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Singh R, Radhamani J, Bhandari DC (2010) Exploring the potential of Ziziphus nummularia (Burm. f.) Wight et Arn. from drier regions of India. Genet Resour Crop Evol 57:929–936

    Article  Google Scholar 

  • Panzade KP, Vishwakarma H, Padaria JC (2020) Heat stress inducible cytoplasmic isoform of ClpB 1 from Z. nummularia exhibits enhanced thermotolerance in transgenic tobacco. Mol Biol Rep 1–11

  • Planton S. Driouech F, Rhaz KE, Lionello P (2016) The climate of the Mediterranean regions in the future climate projections. The Mediterranean region under climate change. A scientific update is report on climate change, 83

  • Queitsch C, Hong SW, Vierling E, Lindquist S (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12:479–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowarth NM, Dauphinee AN, Denbigh GL, Gunawardena AH (2020) Hsp70 plays a role in programmed cell death during the remodelling of leaves of the lace plant (Aponogeton madagascariensis). J Exp Bot 71:907–918

    CAS  PubMed  Google Scholar 

  • Sabir MA, Rasheed F, Zafar Z, Khan I, Nawaz MF, Haq I, Bilal M (2020) A consistent CO2 assimilation rate and an enhanced root development drives the tolerance mechanism in Ziziphus jujuba under soil water deficit. Arid Land Res Manag 1-13

  • Scott JG, Warren WC, Beukeboom LW, Bopp D, Clark AG, Giers SD, Hediger M, Jones AK, Kasai S, Leichter CA, Li M, Meisel RP, Minx P, Murphy TD, Nelson DR, Reid WR, Rinkevich FD, Robertson HM, Sackton TB, Sattelle DB, Thibaud-Nissen F, Tomlinson C, van de Zande L, Walden KKO, Wilson RK, Liu N (2014) Genome of the house fly, Musca domestica L., a global vector of diseases with adaptations to a septic environment. Genome Biol 15:466

    Article  PubMed  PubMed Central  Google Scholar 

  • Senavirathne WMA, Jayatilake DV, Herath V, Wickramasinghe HAM (2017) Evaluation of genetic diversity of cis-acting elements of Abscisic acid responsive element binding protein (ABRE-BP) in selected Sri Lankan rice varieties. Trop Agric Res 28:120–132

    Article  Google Scholar 

  • Shamsudin NAA, Swamy BM, Ratnam W, Cruz MTS, Raman A, Kumar A (2016) Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genet 17:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh RK, Jaishankar J, Muthamilarasan M, Shweta S, Dangi A, Prasad M (2016) Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress. Sci Rep 6:1–14

    Article  CAS  Google Scholar 

  • Song Z, Pan F, Lou X, Wang D, Yang C, Zhang B, Zhang H (2019) Genome-wide identification and characterization of Hsp70 gene family in Nicotiana tabacum. Mol Biol Rep 46:1941–1954

    Article  CAS  PubMed  Google Scholar 

  • Su PH, Li HM (2008) Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiol 146:1231–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su PH, Li HM (2010) Stromal Hsp70 is important for protein translocation into pea and Arabidopsis chloroplasts. Plant Cell 22:1516–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun HF, Meng YP, Cui GM, Cao QF, Li J, Liang AH (2009) Selection of housekeeping genes for gene expression studies on the development of fruit bearing shoots in Chinese jujube (Ziziphus jujube Mill.). Mol Biol Rep 36:2183–2190

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang T, Yu A, Li P, Yang H, Liu G, Liu L (2016) Sequence analysis of the Hsp70 family in moss and evaluation of their functions in abiotic stress responses. Sci Rep 6:33650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vishwakarma H, Junaid A, Manjhi J, Singh GP, Gaikwad K, Padaria JC (2018) Heat stress transcripts, differential expression, and profiling of heat stress tolerant gene TaHsp90 in Indian wheat (Triticuma estivum L.) cv C306. PLoS One 13:e0198293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wahid A (2007) Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. J Plant Res 120:219–228

    Article  PubMed  Google Scholar 

  • Wang P, Song H, Li C, Li P, Li A, Guan H et al (2017) Genome-wide dissection of the heat shock transcription factor family genes in Arachis. Front Plant Sci 8:106

    PubMed  PubMed Central  Google Scholar 

  • Xue Y, Chen B, Wang R, Win AN, Li J, Chai Y (2018) Genome-wide survey and characterization of fatty acid desaturase gene family in Brassica napus and its parental species. Appl Biochem Biotechnol 184:582–598

    Article  CAS  PubMed  Google Scholar 

  • Yadav R, Lone SA, Gaikwad K, Singh NK, Padaria JC (2018a) Transcriptome sequence analysis and mining of SSRs in Jhar Ber (Ziziphus nummularia (Burm. f.) Wight & Arn) under drought stress. Sci Rep 8:1–10

    Google Scholar 

  • Yadav R, Verma OP, Padaria JC (2018b) Transcript profiling and gene expression analysis under drought stress in Ziziphus nummularia (Burm. f.) Wright & Arn. Mol Biol Rep 45:163–174

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Qanmber G, Wang Z, Yang Z, Li F (2020) Gossypium genomics: trends, scope, and utilization for cotton improvement. Trends Plant Sci 25:488–500

    Article  CAS  PubMed  Google Scholar 

  • Yu CS, Cheng CW, Su WC, Chang KCC, Huang SW, Hwang JK, Lu CH, Gajendra P. Raghava S (2014) CELLO2GO: A Web Server for Protein subCELlular LOcalization Prediction with Functional Gene Ontology Annotation. PLoS ONE 9:e99368

  • Zhang Z, Li X (2018) Genome-wide identification of AP2/ERF superfamily genes and their expression during fruit ripening of Chinese jujube. Sci Rep 8:1–16

    Google Scholar 

  • Zhang ZL, Zhu JH, Zhang QQ, Cai YB (2009) Molecular characterization of an ethephon-induced Hsp70 involved in high and low-temperature responses in Hevea Brasiliensis. Plant Physiol Biochem 47:954–959

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang M, Chen J, Rong J, Ding M (2014) Genome-wide analysis of HSP70 superfamily in Gossypium raimondii and the expression of orthologs in Gossypium hirsutum. Yi chuan Hereditas 36:921–933

    CAS  PubMed  Google Scholar 

  • Zhang J, Liu B, Li J, Zhang L, Wang Y, Zheng H et al (2015a) Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses. BMC Genomics 16:1–19

    Article  CAS  Google Scholar 

  • Zhang L, Zhao HK, Dong QL, Zhang YY, Wang YM, Li HY (2015b) Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (Glycine max L.). Front Plant Sci 6:773

    PubMed  PubMed Central  Google Scholar 

  • Zhong L, Zhou W, Wang H, Ding S, Lu Q, Wen X (2013) Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress. Plant Cell 25:2925–2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the National Phytotron Facility, IARI, for providing space for growing plants.

Funding

KP gratefully acknowledges the Indian Agricultural Research Institute (IARI) for the IARI-Junior Research Fellowship grant and the Department of Biotechnology (DBT), Government of India, for DBT-Senior research fellowship grant.

Author information

Authors and Affiliations

Authors

Contributions

KPP conceived, designed experiments, performed the most of analysis, experiments, wrote and revised the manuscript. SSK conducted the analysis and help in manuscript writing. NRC and BH also help in manuscript writing.

Corresponding author

Correspondence to Kishor Prabhakar Panzade.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

N/A

Consent to participate

N/A

Consent for publication

N/A

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Table S1

Summary of all Hsp70 and Hsp100 gene sequences, functional domains and biochemical characteristics in Z. jujuba (XLSX 105 kb)

Table S2

Orthologous protein sequences of Hsp70 and Hsp100 gene family used for phylogenetic relationship analysis (XLSX 30 kb)

Table S3

List of primers used for qRT-PCR analysis of ZjHsp70 and ZjHsp100 gene family (XLSX 12 kb)

Table S4

Identified conserved motif sequences of ZjHsp70 and ZjHsp100 protein family in Z. jujuba (XLSX 11 kb)

Table S5

Summary of domains present in ZjHsp100 and ZjHsp70 proteins (XLSX 11 kb)

Table S6

Identified paralogous and orthologous pairs of ZjHsp70s and ZjHsp100s gene sequences of Z. jujuba, P. mume and A. thaliana (XLSX 11 kb)

Table S7

Details of cis-regulatory elements observed in ZjHsp70 and ZjHsp100 gene family (XLSX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panzade, K.P., Kale, S.S., Chavan, N.R. et al. Genome-wide analysis of Hsp70 and Hsp100 gene families in Ziziphus jujuba. Cell Stress and Chaperones 26, 341–353 (2021). https://doi.org/10.1007/s12192-020-01179-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-020-01179-w

Keywords

Navigation