Skip to main content
Log in

Impact of (Zr, Cu) Ion Substitution on the Optical, Dielectric, and Impedance Behavior of BiFeO3

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we report about the enhanced optical and dielectric properties of (Zr, Cu) dual-doped ceramics prepared by cost-effective sol-gel method. The variation in optical and electrical parameters with increased Zr concentration was studied in detail. The UV–visible spectra showed absorption peaks at 350 nm and 440 nm for all the samples. The optical bandgap energy of the Bi1-xZrxFe0.98Cu0.02O3 system was found to decrease from 2.41 to 1.78 eV as a measure of Zr concentration. Reduced bandgaps show the potential of these ferrites in visible light photocatalysis. With increase in frequency, the dielectric constant and dielectric loss were found to decrease without any resonance peak while the electrical conductivity increased. At 1 MHz, the dielectric constant (ε′) value as high as 8702 has been achieved for the doped sample. Impedance spectroscopy confirmed the semiconductor behavior of the ferrites. The Nyquist plots favor the non-Debye relaxation process. A remarkable improvement in the dielectric response of the (Zr, Cu) dual-doped BiFeO3 is observed which favors reduced eddy current loss thereby increasing its application in high-frequency devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Lebegule, D. Colson, A. Gorget, M. Viret, P. Bonville, J.F. Marucco, D.S. Fusil, Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Phys. Rev. B 76, 024116 (2007)

    ADS  Google Scholar 

  2. S.H. Baek, H.W. Jang, C.M. Folkman, Y.L. Li, B. Winchester, J.X. Zhang, Q. He, Y.H. Chu, C.T. Nelson, M.S. Rzchowski, X.Q. Pan, R. Ramesh, L.Q. Chen, C.B. Eom, Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat. Mater. 9, 309–314 (2010)

    ADS  Google Scholar 

  3. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)

    Google Scholar 

  4. F. Gao, X. Chen, K. Yin, S. Dong, Z. Ren, F. Yuan, T. Yu, Z. Zou, J.-M. Liu, Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv. Mater. 19, 2889–2892 (2007)

    Google Scholar 

  5. M.A. Basith, O. Kurni, M.S. Alam, B.L. Sinha, B. Ahmmad, Room temperature dielectric and magnetic properties of Gd and Ti co-doped BiFeO3 ceramics. J. Appl. Phys. 115, 024102 (2014)

    ADS  Google Scholar 

  6. P. Tang, D. Kuang, S. Yang, Y. Zhang, Structural, morphological and multiferroic properties of the hydrothermally grown gadolinium (Gd) and manganese (Mn) doped sub-micron bismuth ferrites. J. Alloys Compd. 656, 912–919 (2016)

    Google Scholar 

  7. W. Zhou, H. Deng, H. Cao, J. He, J. Liu, P. Yang, J. Chu, Effects of Sm and Mn codoping on structural, optical and magnetic properties of BiFeO3 films prepared by a solegel technique. Mater. Lett. 144, 93–96 (2015)

    Google Scholar 

  8. D. Kuang, P. Tang, X. Wu, S. Yang, X. Ding, Y. Zhang, Structural, optical and magnetic studies of (Y, Co) co-substituted BiFeO3 thin films. J. Alloys Compd. 671, 192–199 (2016)

    Google Scholar 

  9. P. Kumar, N. Shankhwar, A. Srinivasan, M. Kar, Oxygen octahedra distortion induced structural and magnetic phase transitions in Bi1xCaxFe1xMnxO3 ceramics. J. Appl. Phys. 117, 194103 (2015)

    ADS  Google Scholar 

  10. M. Hasan, M.A. Basith, M.A. Zubair, M.S. Hossain, R. Mahbub, M.A. Hakim, M.F. Islam, Saturation magnetization and band gap tuning in BiFeO3 nanoparticles via co-substitution of Gd and Mn. J. Alloy. Comp. 687, 701–706 (2016)

    Google Scholar 

  11. J. Wei, D. Xue, C. Wu, Z. Li, Enhanced ferromagnetic properties of multiferroic Bi1−xSrxMn0.2Fe0.8O3 synthesized by sol–gel process. J. Alloys Compd. 453, 20–23 (2008)

    Google Scholar 

  12. J. Wu, J. Wang, Ferroelectric and impedance behavior of La- and Ti-co doped BiFeO3 thin films. J. Am. Ceram. Soc. 93, 2795–2803 (2010)

    Google Scholar 

  13. R. Das, G. Gopal Khan, K. Mandal, Enhanced ferroelectric, magnetoelectric, and magnetic properties in Pr and Cr co-doped BiFeO3 nanotubes fabricated by template assisted route. J. Appl. Phys. 111, 104115 (2012)

    ADS  Google Scholar 

  14. P.R. Vanga, R.V. Mangalaraja, M. Ashok, Effect of (Nd, Ni) co-doped on the multiferroic and photocatalytic properties of BiFeO3. Mater. Res. Bull. 72, 299–305 (2015)

    Google Scholar 

  15. A. Reetu, S. Sanghi, Rietveld analysis, dielectric and magnetic properties of Sr and Ti codoped BiFeO3 multiferroic. J. Appl. Phys. 110, 073909 (2011)

    ADS  Google Scholar 

  16. C.M. Raghavan, E.S. Kim, J.W. Kim, S.S. Kim, Structural and electrical properties of (Bi0.9Dy0.1)(Fe0.975TM0.025)O3±δ (TM= Ni2+, Cr3+ and Ti4+) thin films. Ceram. Inter. 39, 6057–6062 (2013)

    Google Scholar 

  17. C.M. Raghavan, J.W. Kim, S.S. Kim, Effects of (Dy, Zn) co-doping on structural and electrical properties of BiFeO3 thin films. Ceram. Int. 40, 2281–2286 (2014)

    Google Scholar 

  18. S.U. Lee, S.S. Kim, M.H. Park, J.W. Kim, H.K. Jo, W.J. Kim, Effects of co-substitution on the electrical properties of BiFeO3 thin films prepared by chemical solution deposition. Appl. Surf. Sci. 254, 1493–1497 (2007)

    ADS  Google Scholar 

  19. W. Ye, G. Tan, G. Dong, H. Ren, A. Xia, Improved multiferroic properties in (Ho, Mn) co-doped BiFeO3 thin films prepared by chemical solution deposition. Ceram. Int. 41, 4668–4674 (2015)

    Google Scholar 

  20. I. Coondoo, N. Panwar, M.A. Rafiq, V.S. Puli, M.N. Rafiq, R.S. Katiyar, Structural, dielectric and impedance spectroscopy studies in (Bi0.90R0.10)Fe0.95Sc0.05O3 [R= La, Nd] ceramics. Ceram. Inter. 40, 9895–9902 (2014)

    Google Scholar 

  21. S. Ahmad, M.A. Khan, M. Sarfraz, A.-u. Rehman, M.F. Warsi, I. Shakir, The impact of Yb and Co on structural, magnetic, electrical and photocatalytic behavior of nanocrystalline multiferroic BiFeO3 particles. Ceram. Int. 43, 16880–16887 (2017)

    Google Scholar 

  22. L. Zhang, H. Ke, H. Zhang, F. Li, J. Zhao, H. Luo, L. Cao, G. Zeng, X. Li, W. Wang, D. Jia, Y. Zhou, Effects of morphotropic phase boundary on the electric behavior of Er/Ti co-doped BiFeO3 ceramics. Scr. Mater. 158, 71–76 (2019)

    Google Scholar 

  23. P.C. Sati, M. Arora, S. Chauhan, M. Kumar, S. Chhoker, Structural, magnetic, vibrational and impedance properties of Pr and Ti codoped BiFeO3 multiferroic ceramics. Ceram. Int. 40, 7805–7816 (2014)

    Google Scholar 

  24. J. Singh, A. Agarwal, S. Sanghi, T. Bhasin, M.Yadav, U.Bhakar, O. Singh, Current Appl. Phys. 19(321–331) (2019)

  25. P. Godara, A. Agarwal, N. Ahlawat, S. Sanghi, R. Dahiya, Crystal structure transformation, dielectric and magnetic properties of Ba and Co modified BiFeO3 multiferroic. J. Alloys Compd. 594(175–181), 175–181 (2014)

    Google Scholar 

  26. J.-H. Zhu, J.-Q. Dai, J.-W. Xu, X.-Y. Li, Effect of Zn and Ti co-doping on structure and electrical properties of BiFeO3 ceramics. Ceram. Int. 44, 9215–9220 (2018)

    Google Scholar 

  27. M.R. Islam, M.S. Islam, M.A. Zubair, H.M. Usama, M.S. Azam, A. Sharif, Evidence of superparamagnetism and improved electrical properties in Ba and Ta co-doped BiFeO3 ceramics. J Alloys Compd 735, 2584–2596 (2018)

    Google Scholar 

  28. G. Chen, J. Chen, W. Pei, Y. Lu, Q. Zhang, Q. Zhang, Y. He, Bismuth ferrite materials for solar cells: current status and prospects. Mater. Res. Bull. 110, 39–4940 (2019)

    Google Scholar 

  29. S.J. Clark, J. Robertson, Bandgap and Schottky barrier heights of multiferroic BiFeO3. Appl. Phys. Lett. 90, 132903 (2007)

    ADS  Google Scholar 

  30. R.V. Pisarev, A.S. Moskvin, A.M. Kalashnikova, T. Rasing, Charge transfer transitions in multiferroicBiFeO3and related ferrite insulators. Phys. Rev. B Condens. Matter 79, 235128 (2009)

    ADS  Google Scholar 

  31. R.P. Ummer, P. Sreekanth, B. Raneesh, R. Philip, D. Rouxel, S. Thomas, N. Kalarikkal, Electric, magnetic and optical limiting (short pulse and ultrafast) studies in phase pure (1−x)BiFeO3–xNaNbO3 multiferroic nanocomposite synthesized by the Pechini method. RSC Adv. 5, 67157–67164 (2015)

    Google Scholar 

  32. T.P. Gujar, V.R. Shinde, C.D. Lokhande, Nanocrystalline and highly resistive bismuth ferric oxide thin films by a simple chemical method. Mater. Chem. Phys. 103, 142–146 (2007)

    Google Scholar 

  33. V. Fruth, E. Tenea, M. Gartner, M. Anastasescu, D. Berger, R. Ramer, M. Zaharescu, Preparation of BiFeO3 films by wet chemical method and their characterization. J. Eur. Ceram. Soc. 27, 937–940 (2007)

    Google Scholar 

  34. J.F. Ihlefeld, N.J. Podraza, Z.K. Liu, R.C. Rai, X. Xu, T. Heeg, Y.B. Chen, J. Li, R.W. Collins, J.L. Musfeldt, X.Q. Pan, J. Schubert, R. Ramesh, D.G. Schlom, Optical band gap of BiFeO3 grown by molecular-beam epitaxy. Appl. Phys. Lett. 92, 142908 (2008)

    ADS  Google Scholar 

  35. Y. Xu, M. Shen, Structure and optical properties of nanocrystalline BiFeO3 films prepared by chemical solution deposition. Mater. Lett. 62, 3600–3602 (2008)

    Google Scholar 

  36. S.J. Clark, J. Robertson, Band gap and Schottky barrier heights of multiferroic BiFeO3. Appl Phys. Lett. 90, 132903 (2007)

    ADS  Google Scholar 

  37. S. Zeljković, T. Ivas, H. Maruyama, J.C. Nino, Structural, magnetic and optical properties of BiFeO3 synthesized by the solvent-deficient method. Ceram. Int. 45, 19793–19798 (2019)

    Google Scholar 

  38. S.K. Srivastav, N.S. Gajbhiye, Low temperature synthesis, structural, optical and magnetic properties of bismuth ferrite nanoparticles. J. Am. Ceram. Soc. 95, 3678–3682 (2012)

    Google Scholar 

  39. K.A. McDonnell, N. Wadnerkar, N.J. English, M. Rahman, D. Dowling, Photo-active and optical properties of bismuth ferrite (BiFeO3): an experimental and theoretical study. Chem. Phys. Lett. 572, 78–84 (2013)

    ADS  Google Scholar 

  40. P.R. Vanga, R.V. Mangalaraja, N.V. Giridharan, M. Ashok, Influence of divalent Ni and trivalent Cr ions on the properties of ytterbium modified bismuth ferrite. J Alloys Compds. 684, 55–61 (2016)

    Google Scholar 

  41. A. Manzoor, A.M. Afzal, N. Amin, M.I. Arashad, M. Usman, M.N. Rasool, M.F. Khan, Investigation of dielectric and optical properties of structurally modified bismuth ferrite nanomaterials. Ceram. Int. 42, 11447–11452 (2016)

    Google Scholar 

  42. M. Sahni, D. Kumar, S. Chauhan, M. Singh, N. Kumar, Study of structural, optical and photocatalytic activity of Sm and Ni doped BiFeO3 (BFO) and BFO@ZnO nanostructure. Mater Today: Proc. 28, 56–60 (2020)

    Google Scholar 

  43. A.S. Priya, I.B.S. Banu, M.S. Anwar, S. Hussain, Studies on the multiferroic properties of (Zr, Cu) co-doped BiFeO3 prepared by sol-gel method. J Sol-gel Sci. Technolo. 80, 579–586 (2016)

    Google Scholar 

  44. P. Kubelka, F. Munk, An article on optics of paint layers. Z. Tech. Phys. 12(593–601), 259–274 (1931)

    Google Scholar 

  45. Z. Zhang, P. Wu, L. Chen, J. Wang, Systematic variations in structural and electronic properties of BiFeO3 by A-site substitution. Appl. Phys. Lett. 96, 012905 (2010)

    ADS  Google Scholar 

  46. E. Barsoukov, J.R. Macdonald, Impedance spectroscopy theory, experiments and applications, 2nd edn. (Wiley, NewYork, 2005)

    Google Scholar 

  47. A.S. Priya, D. Geetha, N. Kavitha, Evaluation of structural and dielectric properties of Al, Ce co-doped cobalt ferrites. Mater. Res. Express 5, 066109 (2018)

    ADS  Google Scholar 

  48. K.M. Sharif, A.M. Khan, A. Hussain, F. Iqbal, I. Shakir, G. Murtaza, N.M. Akhtar, M. Ahmad, F.M. Warsi, Synthesis and characterization of Zr and Mg doped BiFeO3 nanocrystalline mutiferroics via micro emulsion route. J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.01.184

  49. S. Zawar, S. Atiq, M. Tabasum, S. Riaz, S. Nasee, Highly stable dielectric frequency response of chemically synthesized Mn-substituted ZnFe2O4. J. Saudi Chem. Soc. 23, 417–426 (2019)

    Google Scholar 

  50. H.P.D. Lanyon, R.A. Tuft, Bandgap narrowing in moderately to heavily doped silicon. IEEE Trans. Electron Devices 26, 1014–1018 (1979)

    ADS  Google Scholar 

  51. Q. Chang, X. Sun, W. Sun, B.K. Tay, S.P. Lau, H.T. Huang, S. Li, Dielectric suppression and its effect on photoabsorption of nanometric semiconductors. J. Phys. D. Appl. Phys. 34, 2359–2362 (2001)

    ADS  Google Scholar 

  52. A.S. Priya, D. Geetha, N. Kavitha, Effect of Al substitution on the structural, electric and impedance behavior of cobalt ferrite. Vacuum 160, 453–460 (2019)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Geetha.

Ethics declarations

Competing Interest

The authors declare that they have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathiya Priya, A., Geetha, D. Impact of (Zr, Cu) Ion Substitution on the Optical, Dielectric, and Impedance Behavior of BiFeO3. Braz J Phys 51, 40–46 (2021). https://doi.org/10.1007/s13538-020-00822-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00822-2

Keywords

Navigation