Skip to main content
Log in

Utilization of alkaline Aluminosilicate activation in heavy metals immobilization and producing dense hybrid composites

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Recently geopolymer technology possesses not only great efficiency in immobilizing heavy metal wastes but also produces valuable materials that can be applied in building sectors. The aim of this study is to examine the capability of geopolymers in the immobilization and entrapping of heavy metals bearing materials. The study will focus on the evaluation of optimum ratio of heavy metal that can affect and densify the produced composite. The studied mortar’s binder was made from blast furnace slag, while the used fine aggregates were air-cooled slag < 1 mm. However, the used activator was 8% sodium hydroxide. The studied heavy metals’ bearing materials were barium sulfate, lead phosphate, lead slag and electric arc furnace dust used as partial replacement of blast furnace slag. The physico-mechanical characterization of each set of samples was conducted using XRD, FTIR, SEM, compressive strength and bulk density. Results demonstrated that barium sulfate can be efficiently used up to 2%, lead phosphate up to 1%, lead slag up to 5% and electric arc furnace dust up to 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kontopoulos, A.; Komnitsas, K. K.; Xenidis, A.: Environmental characterization of the lead smelter slags in Lavrion. In: Proceedings of the IMM Minerals Metals and the Environment II Conference, Prague, (1996)

  2. Glasser, F.P.: Fundamental aspects of cement solidification and stabilization. J. Hazard. Mater. 52(2–3), 151–170 (1997)

    Google Scholar 

  3. Malviya, R.; Chaudhary, R.: Factors affecting hazardous waste solidification/stabilization, a review. J. Hazard. Mater. B137, 267–276 (2006)

    Google Scholar 

  4. Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J.: Geopolymer technology, the current state of the art. J. Mater. Sci. 42(9), 2917–2933 (2007)

    Google Scholar 

  5. Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J.: Do geopolymers actually contain nano crystalline zeolites a reexamination of existing results. Chem. Mater. 17(12), 3075–3085 (2005)

    Google Scholar 

  6. Shi, C.; Krivenko, P.V.; Roy, D.M.: Alkali-Activated Cements and Concretes, p. 376. Taylor & Francis, Abingdon (2006)

    Google Scholar 

  7. Van Deventer, J.S.J.; Provis, J.L.; Duxson, P.; Lukey, G.C.: Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. J. Hazard. Mater. A139(3), 506–513 (2007)

    Google Scholar 

  8. Milestone, N.B.: Reactions in cement encapsulated nuclear wastes, need for toolbox of different cement types. Adv. Appl. Ceram. 105(1), 13–20 (2006)

    Google Scholar 

  9. Deja, J.: Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali-activated slag binders. Cement Concrete Res. 32(12), 1971–1979 (2002)

    Google Scholar 

  10. Van Jaarsveld, J.G.S.; van Deventer, J.S.J.: The effect of metal contaminants on the formation and properties of waste-based geopolymers. Cement Concrete Res. 29(8), 1189–1200 (1999)

    Google Scholar 

  11. Palomo, A.; Palacios, M.: Alkali-activated cementitious materials: alternative matrices for the immobilization of hazardous wastes, Part II. Stabilization of chromium and lead. Cement Concrete Res. 33(2), 289–295 (2003)

    Google Scholar 

  12. Duxson, P.; Provis, J.L.; Lukey, G.C.; Mallicoat, S.W.; Kriven, W.M.; van Deventer, J.S.J.: Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. APhysicochem. Eng. Asp. 269(1–3), 47–58 (2005)

    Google Scholar 

  13. Duxson, P.; Mallicoat, S.W.; Lukey, G.C.; Kriven, W.M.; van Deventer, J.S.J.: The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf. A Physicochem. Eng. Asp. 292(1), 8–20 (2007)

    Google Scholar 

  14. Van Jaarsveld, J.G.S.: Ph.D. Thesis, University of Melbourne, Australia, (2000); 381

  15. Lloyd, R.R.: Ph.D. Thesis, University of Melbourne, Australia, to be submitted

  16. Lee, W.K.W.; van Deventer, J.S.J.: The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements. Cement Concrete Res. 32(4), 577–584 (2002)

    Google Scholar 

  17. Khater, H.M.: Hybrid slag geopolymer composites with durable characteristics activated by cement kiln dust. Constr. Build. Mater. 228, 116708 (2019). https://doi.org/10.1016/j.conbuildmat.2019.116708

    Article  Google Scholar 

  18. Lizcano, M.; Kim, H.S.; Basu, S.; Radovic, M.: Mechanical properties of sodium and potassium activated metakaolin-based geopolymers. J. Mater. Sci. 47, 2607–2616 (2012)

    Google Scholar 

  19. Fernández-Jiménez, A.; Zibouche, F.; Boudissa, N.; García-Lodeiro, I.; Abadlia, M.T.; Palomo, A.: Metakaolin-slag-clinker blends. The role of Na+ or K+ as alkaline activators of theses ternary blends. J. Am. Ceram. Soc. 96(6), 1991–1998 (2013)

    Google Scholar 

  20. Hounsia, A.D.; Nanab, G.; Djétélia, G.; Blanchart, P.; Alowanoua, D.; Kpeloua, P.; Napoa, K.; Tchangbédjia, G.; Praisler, M.: How does Na, K alkali metal concentration change the early age structural characteristic of kaolin-based geopolymers. Ceram. Int. 40, 8953–8962 (2014)

    Google Scholar 

  21. Leong, H.Y.; Ong, D.E.L.; Sanjayan, J.G.; Nazari, A.: The effect of different Na2O and K2O ratios of alkali activator on compressive strength of fly ash based-geopolymer. Constr. Build. Mater. 106, 500–511 (2016)

    Google Scholar 

  22. Zhang, F.; Zhanga, L.; Liua, M.; Mub, C.; Lianga, Y.N.; Huc, X.: Role of alkali cation in compressive strength of metakaolin based geopolymers. Ceram. Int. 43, 3811–3817 (2017)

    Google Scholar 

  23. Hu, N.; Bernsmeier, D.; Grathoff, G.H.; Warr, L.N.: The influence of alkali activator type, curing temperature and gibbsite on the geopolymerization of an interstratified illite-smectite rich clay from Fried land. Appl. Clay Sci. 135, 386–393 (2017)

    Google Scholar 

  24. Steins, P.; Poulesquen, A.; Frizon, F.; Diat, O.; Jestin, J.; Causse, J.; Lambertina, D.; Rossignol, S.: Effect of aging and alkali activator on the porous structure of a geopolymer. J. Appl. Crystallogr. 47, 316–324 (2014)

    Google Scholar 

  25. Lemougna, P.N.; Melo, U.F.C.; Delplancke, M.P.; Rahier, H.: Influence of the activating solution composition on the stability and thermo-mechanical properties of inorganic polymers (geopolymers) from volcanic ash. Constr. Build. Mater. 48, 278–286 (2013)

    Google Scholar 

  26. Chequer, C.D.; Frizon, F.: Impact of sulfate and nitrate incorporation on potassium and sodium-based geopolymers: geopolymerization and materials properties. J. Mater. Sci. 46, 5657–5664 (2011)

    Google Scholar 

  27. Palomo, A.; Grutzeck, M.W.; Blanco, M.T.: Alkali-activated fly ashes: a cement for the future. Cem. Concr. Res. 29, 1323–1329 (1999)

    Google Scholar 

  28. Wang, S.; Li, L.; Zhu, Z.H.: Solid-state conversion of fly ash to effective adsorbents for Cu removal from wastewater. J. Hazard. Mater. B139, 254–259 (2007)

    Google Scholar 

  29. Al-Zboon, K.; Al-Harahsheh, M.S.; Hani, F.B.: Fly ash-based geopolymer for Pb removal from aqueous solution. J. Hazard. Mater. 188, 414–421 (2011)

    Google Scholar 

  30. López, F.J.; Sugita, S.; Tagaya, M.; Kobayashi, T.: Metakaolin-based geopolymers for targeted adsorbents to heavy metal ion separation. J. Mater. Sci. Chem. Eng. 2, 16–27 (2014)

    Google Scholar 

  31. Al-Harahsheh, M.S.; Al Zboon, K.; Al-Makhadmeh, L.; Hararah, M.; Mahasneh, M.: Fly ash based geopolymer for heavy metal removal: a case study on copper removal. J. Environ. Chem. Eng. 3, 1669–1677 (2015)

    Google Scholar 

  32. Ge, Y.; Cui, X.; Kong, Y.; Li, Z.; He, Y.; Zhou, Q.: Porous geopolymeric spheres for removal of Cu(II) from aqueous solution: synthesis and evaluation. J. Hazard. Mater. 283, 244–251 (2015)

    Google Scholar 

  33. Javadian, H.; Ghorbani, F.; Tayebi, H.; Asl, S.H.: Study of the adsorption of Cd (II)from aqueous solution using zeolite-based geopolymer synthesized from coal fly ash; kinetic, isotherm and thermodynamic studies. Arabian J. Chem. 8, 837–849 (2015)

    Google Scholar 

  34. Luukkonen, T.; Runtti, H.; Niskanen, M.; Tolonen, E.; Sarkkinen, M.; Kemppainen, K.; Rämö, J.; Lassi, U.: Simultaneous removal of Ni(II) As(III), and Sb(III) from spiked mine effluent with metakaolin and blast-furnace-slag geopolymers. J. Environ. Manage. 166, 579–588 (2016)

    Google Scholar 

  35. Ge, Y.; Cui, X.; Liao, C.; Li, Z.: Facile fabrication of green geopolymer/alginate hybrid spheres for efficient removal of Cu(II) in water: batch and column studies. Chem. Eng. J. 311, 126–134 (2017)

    Google Scholar 

  36. Kara, I.; Yilmazer, D.; Akar, S.T.: Metakaolin based geopolymer as an effective adsorbent for adsorption of zinc(II) and nickel(II) ions from aqueous solutions. Appl. Clay Sci. 139, 54–63 (2017)

    Google Scholar 

  37. Wan, Q.; Rao, F.; Song, S.; Leon-Patino, C. A.; Ma, Y.; Yin, W.: Consolidation of mine tailings through geopolymerization at ambient temperature, J. Am. Ceram. Soc. 1–11 (2018)

  38. Ke, X.; Bernal, S.A.; Ye, N.; Provis, J. L.; Yang, J.: One-part geopolymers based on thermally treated red Mud/NaOH Blends. J. Am. Ceram. Soc. 1–7 (2014)

  39. ASTM C109M: Standard Test Method for Compressive Strength of Hydraulic Cement Mortars, Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, (2016)

  40. Standards, Egyptian: Concrete Building Units Used in Non-Load and Load Bearing Walls, p. 1292. Egyptian Organization for Standardization, Cairo (1992)

    Google Scholar 

  41. Ugheoke, B.I.; Onche, E.O.; Namessan, O.N.; Asikpo, G.A.: Property Optimization of Kaolin—Rice Husk Insulating Fire—Bricks. Leonardo Electronic J. Pract. Technol. 9, 167–178 (2006)

    Google Scholar 

  42. de Vargas, A.S.; DalMolin, D.C.; Masuero, Â.B.; Vilela, A.C.; Castro-Gomes, J.; de Gutierrez, R.M.: Strength development of alkali-activated fly ash produced with combined NAOH and CA(OH)2 activators. Cement Concrete Compos. 53, 341–349 (2014)

    Google Scholar 

  43. Panias, D.; Giannopoulou, I.P.; Perraki, T.: Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers, Colloids and Surfaces A: physico-chem. Eng. Aspects 301, 246–254 (2007)

    Google Scholar 

  44. Kalinkin, A.M.; Kalinkina, E.V.; Politov, A.A.; Makarov, V.N.; Boldyrev, V.V.: Mechanochemical interaction of Ca silicate and aluminosilicate minerals with carbon dioxide. J. Mater. Sci. 39, 5393–5398 (2004)

    Google Scholar 

  45. Temuujin, J.; Van Riessen, A.; Williams, R.: Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. J. Hazard. Mater. J. Hazard. Mater. 167(1–3), 82–88 (2009)

    Google Scholar 

  46. Weitzel, B.; Hansen, M. R.; Kowald, T. L.; Müller, T.; Spiess, H. W.; Trettin, H. F. R.: Influence of Multiwalled Carbon Nanotubes on the Microstructure of CSH-Phases. In: Proceeding of 13th Congress on the Chemistry of Cement, 3-8 July (2011), Madrid, Spain

  47. Alarcon-Ruiz, L.; Platret, G.; Massieu, E.; Ehrlacher, A.: The use of thermal analysis in assessing the effect of temperature on a cement paste. Cem. Concr. Res. 35(3), 609–613 (2005)

    Google Scholar 

  48. Buchwald, A.; Tatarin, R.; Stephan, D.: Reaction progress of alkaline-activated metakaolin-ground granulated blast furnace slag blends. J. Mater. Sci. 44, 5609–5617 (2009)

    Google Scholar 

  49. Bernal, S.A.; Provis, J.L.; Rose, V.; Mejía de Gutiérrez, R.: Evolution of binder structure in sodium silicate-activated lag metakaolin blends. Cem. Concr. Compos. 33(1), 46–54 (2011)

    Google Scholar 

  50. Engelhardt, G.; Felsche, J.; Sieger, P.: The hydrosodalite system Na6+x[SiAlO4]6(OH)x.nH2O: formation, phase composition, and de- and rehydration studied by 1H, 23Na, and 29Si MAS-NMR spectroscopy in tandem with thermal analysis, X-ray diffraction, and IR spectroscopy. J. Am. Chem. Soc. 114, 1173–1182 (1992)

    Google Scholar 

  51. Barall, E.M.; Rogers, L.B.: Differential thermal analysis of the decomposition of sodium bicarbonate and its simple double salts. J. Inorg. Nucl. Chem. 28, 41 (1966). https://doi.org/10.1016/0022-1902(66)80226-9

    Article  Google Scholar 

  52. Vu, T.H.; Gowripalan, N.: Mechanism of heavy metal immobilization using geopolymerization techniques- a review. J. Adv. Concr. Technol. 18, 124–135 (2018)

    Google Scholar 

  53. Davidovits, J.: Properties of geopolymer cements. In: 1st International Conference of Alkaline Cements and Concretes, (1994), pp. 131-149- Kiev, Ukraine

  54. Zheng, L.; Wang, W.; Shi, Y.: The effects of alkaline dosage and Si/Al ratio on immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer. Chemosphere 79, 665–671 (2010)

    Google Scholar 

  55. Grutzeck, M.W.; Siemer, D.D.: Zeolites synthesized from class F fly ash and sodium aluminate slurry. J. Am. Ceram. Soc. 80(9), 2449–2453 (1997)

    Google Scholar 

  56. Khater, H.M.: Influence of electric arc furnace slag on characterisation of the produced geopolymer composites, építôanyag. J. Silicate Based Compos. Mater. 67(3), 82–88 (2015)

    Google Scholar 

  57. Khater, H.M.: Effect of Nano silica on microstructure formation of low cost geopolymer binder. J. Nanocompos. (Taylor and Francis) 2(2), 84–97 (2016). https://doi.org/10.1080/20550324.2016.1203515

    Article  Google Scholar 

  58. Khater, H.M.; Nagar, El; Abdeen, M.: Combination between organic polymer and geopolymer for production of eco-friendly metakaolin composite. Int. J. Australian Ceramic Soc. (2019). https://doi.org/10.1007/s41779-019-00371-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Khater.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khater, H.M., Ghareib, M. Utilization of alkaline Aluminosilicate activation in heavy metals immobilization and producing dense hybrid composites. Arab J Sci Eng 46, 6333–6348 (2021). https://doi.org/10.1007/s13369-020-05065-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05065-6

Keywords

Navigation