Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T12:45:59.226Z Has data issue: false hasContentIssue false

Influence of load orientations with respect to twin boundaries on the deformation behaviors of high-entropy alloy nanocrystals

Published online by Cambridge University Press:  12 November 2020

Chunyuan Liang
Affiliation:
Center for X-mechanics, Faculty of Engineering, Zhejiang University, China
Qian Zhang
Affiliation:
Center for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, China
Yecheng Shao
Affiliation:
Center for X-mechanics, Faculty of Engineering, Zhejiang University, China
Yeqiang Bu
Affiliation:
Center for X-mechanics, Faculty of Engineering, Zhejiang University, China
Jiabin Liu*
Affiliation:
Center for X-mechanics, Faculty of Engineering, Zhejiang University, China; liujiabin@zju.edu.cn
Xiaoyan Li
Affiliation:
Center for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, China
Hongtao Wang*
Affiliation:
Center for X-mechanics, Faculty of Engineering, Zhejiang University, China; htw@zju.edu.cn
Wei Yang*
Affiliation:
Center for X-mechanics, Faculty of Engineering, Zhejiang University, China; yangw@zju.edu.cn
*
*Corresponding authors.
*Corresponding authors.
*Corresponding authors.
Get access

Abstract

The orientation between twin boundary (TB) and loading direction may play an intriguing role in the deformation behaviors of twinned metallic materials. In this aspect, its essential effect on the high-entropy alloy (HEA) nanocrystals is elusive. Attention herein is focused on the atomic-scaled deformation mechanisms and fracture behaviors of HEA nanocrystals containing twins of even smaller spacings via a combined approach of in situ tensile tests inside a high-resolution transmission electron microscope and molecular dynamics simulations. The results indicate that the deformation mechanisms (especially dislocation activities) of HEA nanocrystals depend on the load orientation with respect to TBs. Because of the low activation energy and uneven local composition of HEA, the surface acts as an effective dislocation source and, together with Schmid factor, dominate the activated dislocation slip system. The load orientation-dependent TB-dislocation interactions may transform the type of fracture from semi-brittle to ductile. Our results indicate that the deformation mechanisms and the types of fracture in HEA nanocrystals can be controlled by changing the orientation.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

The nanotwinned materials attract extensive attention because of their exceptional combination of high strength and ductility. The deep understanding of the role of twin will bring advances to design new strong and ductile materials. The orientation between twin boundary (TB) and loading direction plays an intriguing role in the deformation behaviors. In this work, we use a novel method, in situ transmission electron microscope (TEM) melting, to produce nanotwin with special load/TB orientation. The strong load/TB orientation dependences of deformation mechanisms and fracture modes are revealed via in situ TEM strain and molecular dynamics simulations. The free surface together with Schmid factor dominate the activated dislocation slip system. This work points out an alternative route in designing advanced twin-induced-plasticity materials by controlling load/TB orientations.

References

Olson, G.B., Computational design of hierarchically structured materials. Science 277, 1237 (1997).CrossRefGoogle Scholar
Weertman, J.R., Farkas, D., Hemker, K., Kung, H., Mayo, M., Mitra, R., Van Swygenhoven, H., Structure and mechanical behavior of bulk nanocrystalline materials. MRS Bull. 24, 44 (1999).CrossRefGoogle Scholar
Lu, K., Lu, L., Suresh, S., Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349 (2009).CrossRefGoogle ScholarPubMed
Shen, Y.F., Lu, L., Lu, Q.H., Jin, Z.H., Lu, K., Tensile properties of copper with nano-scale twins. Scr. Mater. 52, 989 (2005).CrossRefGoogle Scholar
Zhang, X., Misra, A., Wang, H., Shen, T.D., Nastasi, M., Mitchell, T.E., Hirth, J.P., Hoagland, R.G., Embury, J.D., Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning. Acta Mater. 52, 995 (2004).CrossRefGoogle Scholar
Lu, L., Chen, X., Huang, X., Lu, K., Revealing the maximum strength in nanotwinned copper. Science 323, 607 (2009).CrossRefGoogle ScholarPubMed
Chassagne, M., Legros, M., Rodney, D., Atomic-scale simulation of screw dislocation/coherent twin boundary interaction in Al, Au, Cu and Ni. Acta Mater. 59, 1456 (2011).CrossRefGoogle Scholar
You, Z.S., Li, X.Y., Gui, L.J., Lu, Q.H., Zhu, T., Gao, H.J., Lu, L., Plastic anisotropy and associated deformation mechanisms in nanotwinned metals. Acta Mater. 61, 217 (2013).CrossRefGoogle Scholar
Lu, L., Schwaiger, R., Shan, Z.W., Dao, M., Lu, K., Suresh, S., Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater. 53, 2169 (2005).CrossRefGoogle Scholar
Wang, J., Sansoz, F., Huang, J., Liu, Y., Sun, S., Zhang, Z., Mao, S.X., Near-ideal theoretical strength in gold nanowires containing angstrom scale twins. Nat. Commun. 4, 1742 (2013).CrossRefGoogle ScholarPubMed
Yan, F.K., Li, Q., Tao, N.R., Anisotropic strengthening of nanotwinned austenitic grains in a nanotwinned stainless steel. Scr. Mater. 142, 15 (2018).CrossRefGoogle Scholar
Imrich, P.J., Kirchlechner, C., Motz, C., Dehm, G., Differences in deformation behavior of bicrystalline Cu micropillars containing a twin boundary or a large-angle grain boundary. Acta Mater. 73, 240 (2014).CrossRefGoogle Scholar
Malyar, N.V., Micha, J.-S., Dehm, G., Kirchlechner, C., Dislocation-twin boundary interaction in small scale Cu bi-crystals loaded in different crystallographic directions. Acta Mater. 129, 91 (2017).CrossRefGoogle Scholar
George, E.P., Raabe, D., Ritchie, R.O., High-entropy alloys. Nat. Rev. Mater. 4, 515 (2019).CrossRefGoogle Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., Lu, Z.P., Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).CrossRefGoogle Scholar
Mishra, R.S., Kumar, N., Komarasamy, M., Lattice strain framework for plastic deformation in complex concentrated alloys including high entropy alloys. Mater. Sci. Technol. 31, 1259 (2015).CrossRefGoogle Scholar
Feng, X., Zhang, J., Wu, K., Liang, X., Liu, G., Sun, J., Ultrastrong Al 0.1 CoCrFeNi high-entropy alloys at small scales: effects of stacking faults vs. nanotwins. Nanoscale 10, 13329 (2018).CrossRefGoogle Scholar
Lu, W., Liebscher, C.H., Yan, F., Fang, X., Li, L., Li, J., Guo, W., Dehm, G., Raabe, D., Li, Z., Interfacial nanophases stabilize nanotwins in high-entropy alloys. Acta Mater. 185, 218 (2020).CrossRefGoogle Scholar
Wang, Z., Wang, C., Zhao, Y.-L., Hsu, Y.-C., Li, C.-L., Kai, J.-J., Liu, C.-T., Hsueh, C.-H., High hardness and fatigue resistance of CoCrFeMnNi high entropy alloy films with ultrahigh-density nanotwins. Inter. J. Plast. 131, 102726 (2020).CrossRefGoogle Scholar
Qu, S.X., Wang, G.M., Zhou, H.F., Huang, Z.L., Can nanoscale twin boundaries serve as dislocation sources in single crystals? Comput. Mater. Sci. 50, 1567 (2011).CrossRefGoogle Scholar
Yang, Z.Y., Zheng, L.L., Yue, Y.H., Lu, Z.X., Effects of twin orientation and spacing on the mechanical properties of Cu nanowires. Sci. Rep. 7, 9 (2017).Google ScholarPubMed
Sun, L.G., He, X.Q., Lu, J., Atomistic simulation study on twin orientation and spacing distribution effects on nanotwinned Cu films. Philos. Mag. 95, 3467 (2015).CrossRefGoogle Scholar
Yuan, Y., Li, X., Yang, W., Low-angle grain boundary structures and size effects of nickel nanolaminated structures. J. Mech. Phys. Solids 130, 280 (2019).CrossRefGoogle Scholar
Tong, C.-J., Chen, M.-R., Yeh, J.-W., Lin, S.-J., Chen, S.-K., Shun, T.-T., Chang, S.-Y., Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 1263 (2005).CrossRefGoogle Scholar
Liu, Y., Chen, Z., Shi, J., Wang, Z., Zhang, J., The effect of Al content on microstructures and comprehensive properties in AlxCoCrCuFeNi high entropy alloys. Vacuum 161, 143 (2019).CrossRefGoogle Scholar
Xu, X., Liu, P., Tang, Z., Hirata, A., Song, S., Nieh, T., Liaw, P., Liu, C., Chen, M., Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi. Acta Mater. 144, 107 (2018).CrossRefGoogle Scholar
Kumar, N., Ying, Q., Nie, X., Mishra, R.S., Tang, Z., Liaw, P.K., Brennan, R.E., Doherty, K.J., Cho, K.C., High strain-rate compressive deformation behavior of the Al0.1CrFeCoNi high entropy alloy. Mater. Des. 86, 598 (2015).CrossRefGoogle Scholar
Liu, J.B., Chen, C.X., Xu, Y.Q., Wu, S.W., Wang, G., Wang, H.T., Fang, Y.T., Meng, L., Deformation twinning behaviors of the low stacking fault energy high-entropy alloy. An in-situ TEM study. Scripta Mater. 137, 9 (2017).CrossRefGoogle Scholar
Wu, S., Wang, G., Yi, J., Jia, Y., Hussain, I., Zhai, Q., Liaw, P., Strong grain-size effect on deformation twinning of an Al0. 1CoCrFeNi high-entropy alloy. Mater. Res. Lett. 5, 276 (2017).CrossRefGoogle Scholar
Plimpton, S., Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
Zhou, X.W., Johnson, R.A., Wadley, H.N.G., Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B 69, 144113 (2004).CrossRefGoogle Scholar
Bonny, G., Terentyev, D., Pasianot, R.C., Poncé, S., Bakaev, A., Interatomic potential to study plasticity in stainless steels: the FeNiCr model alloy. Model. Simul. Mater. Sci. Eng. 19, 085008 (2011).CrossRefGoogle Scholar
Sharma, A., Singh, P., Johnson, D.D., Liaw, P.K., Balasubramanian, G., Atomistic clustering-ordering and high-strain deformation of an Al0.1CrCoFeNi high-entropy alloy. Sci. Rep. 6, 11 (2016).CrossRefGoogle ScholarPubMed
Faken, D., Jónsson, H., Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2, 279 (1994).CrossRefGoogle Scholar
Stukowski, A., Bulatov, V.V., Arsenlis, A., Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. Sci. Eng. 20, 16 (2012).CrossRefGoogle Scholar
Zhu, Q., Huang, Q., Guang, C., An, X., Mao, S.X., Yang, W., Zhang, Z., Gao, H., Zhou, H., Wang, J., Metallic nanocrystals with low angle grain boundary for controllable plastic reversibility. Nat. Commun. 11, 3100 (2020).CrossRefGoogle ScholarPubMed
Lu, Y., Song, J., Huang, J.Y., Lou, J., Fracture of sub-20 nm ultrathin gold nanowires. Adv. Funct. Mater. 21, 3982 (2011).CrossRefGoogle Scholar
Wang, J., Zeng, Z., Weinberger, C.R., Zhang, Z., Zhu, T., Mao, S.X., In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centered cubic tungsten. Nat. Mater. 14, 594 (2015).CrossRefGoogle Scholar
Zheng, H., Wang, J., Huang, J.Y., Wang, J., Mao, S.X.J.N., Void-assisted plasticity in Ag nanowires with a single twin structure. Nanoscale 6, 9574 (2014).CrossRefGoogle ScholarPubMed
Wang, J.W., Sansoz, F., Huang, J.Y., Liu, Y., Sun, S.H., Zhang, Z., Mao, S.X., Near-ideal theoretical strength in gold nanowires containing angstrom scale twins. Nat. Commun. 4, 8 (2013).Google ScholarPubMed
Jin, Z.H., Dunham, S.T., Gleiter, H., Hahn, H., Gumbsch, P., A universal scaling of planar fault energy barriers in face-centered cubic metals. Scr. Mater. 64, 605 (2011).CrossRefGoogle Scholar
Han, W.Z., Wu, S.D., Li, S.X., Zhang, Z.F., Origin of deformation twinning from grain boundary in copper. Appl. Phys. Lett. 92, 221909 (2008).CrossRefGoogle Scholar
Zhu, Y.T., Wu, X.L., Liao, X.Z., Narayan, J., Mathaudhu, S.N., Kecskés, L.J., Twinning partial multiplication at grain boundary in nanocrystalline fcc metals. Appl. Phys. Lett. 95, 031909 (2009).CrossRefGoogle Scholar
Ashbee, K.H.G., Intersecting stacking faults in face-centered cubic lattices, Acta Metall. 15, 1129 (1967).CrossRefGoogle Scholar
Zhu, Y.T., Liao, X.Z., Wu, X.L., Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57, 1 (2012).CrossRefGoogle Scholar
Sun, J.P., Fang, L., Ma, A.B., Jiang, J.H., Han, Y., Chen, H.W., Han, J., The fracture behavior of twinned Cu nanowires: A molecular dynamics simulation. Mater. Sci. Eng.: A 634, 86 (2015).CrossRefGoogle Scholar
Imrich, P.J., Kirchlechner, C., Dehm, G., Influence of inclined twin boundaries on the deformation behavior of Cu micropillars. Mater. Sci. Eng.: A 642, 65 (2015).CrossRefGoogle Scholar
Liebig, J.P., Krauß, S., Göken, M., Merle, B., Influence of stacking fault energy and dislocation character on slip transfer at coherent twin boundaries studied by micropillar compression. Acta Mater. 154, 261 (2018).CrossRefGoogle Scholar
Park, H.S., Gall, K., Zimmerman, J.A., Mechanics and P.o. Solids: Deformation of FCC nanowires by twinning and slip. J. Mech. Phys. Solids 54, 1862 (2006).CrossRefGoogle Scholar
Seo, E.J., Kim, J.K., Cho, L., Mola, J., Oh, C.Y., De Cooman, B.C., Micro-plasticity of medium Mn austenitic steel: Perfect dislocation plasticity and deformation twinning. Acta Mater. 135, 112 (2017).CrossRefGoogle Scholar
Jin, Z.H., Dunham, S.T., Gleiter, H., Hahn, H., Gumbsch, P., A universal scaling of planar fault energy barriers in face-centered cubic metals. Scr. Mater. 64, 605 (2011).CrossRefGoogle Scholar
Curtze, S., Kuokkala, V., Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater. 58, 5129 (2010).CrossRefGoogle Scholar
Zhu, T., Li, J., Samanta, A., Leach, A., Gall, K., Temperature and strain-rate dependence of surface dislocation nucleation. Scr. Mater. 100, 025502 (2008).Google ScholarPubMed
Mishra, R.S., Kumar, N., Komarasamy, M., Technology, lattice strain framework for plastic deformation in complex concentrated alloys including high entropy alloys. Mater. Sci. Technol. 31, 1259 (2015).CrossRefGoogle Scholar
Gromov, D.G., Gavrilov, S.A., Heterogeneous melting in low-dimensional systems and accompanying surface effects, thermodynamics–physical chemistry of aqueous systems. InTech. 7, 157 (2011).Google Scholar
Mridha, S., Sadeghilaridjani, M., Mukherjee, S., Activation volume and energy for dislocation nucleation in multi-principal element alloys. Metals 9 (2), 263 (2019).CrossRefGoogle Scholar
Komarasamy, M., Alagarsamy, K., Mishra, R.S., Serration behavior and negative strain rate sensitivity of Al0.1CoCrFeNi high entropy alloy. Intermetallics 84, 20 (2017).CrossRefGoogle Scholar
Ding, Q., Zhang, Y., Chen, X., Fu, X., Chen, D., Chen, S., Gu, L., Wei, F., Bei, H., Gao, Y., Wen, M., Li, J., Zhang, Z., Zhu, T., Ritchie, R.O., Yu, Q., Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 574, 223 (2019).CrossRefGoogle ScholarPubMed
Zou, L., Yang, C., Lei, Y., Zakharov, D. Jr., Wiezorek, M.K., Su, D., Yin, Q., Li, J., Liu, Z., Dislocation nucleation facilitated by atomic segregation. Nat. Mater. 17 (1), 56 (2018).CrossRefGoogle ScholarPubMed
Supplementary material: File

Liang et al. supplementary material

Liang et al. supplementary material

Download Liang et al. supplementary material(File)
File 11.6 MB