Skip to main content
Log in

Classical and generalized solutions of fractional stochastic differential equations

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

For stochastic evolution equations with fractional derivatives, classical solutions exist when the order of the time derivative of the unknown function is not too small compared to the order of the time derivative of the noise; otherwise, there can be a generalized solution in suitable weighted chaos spaces. Presence of fractional derivatives in both time and space leads to various modifications of the stochastic parabolicity condition. Interesting new effects appear when the order of the time derivative in the noise term is less than or equal to one-half.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers. Springer, New York (1999)

    Book  MATH  Google Scholar 

  2. Brezeźniak, Z., Veraar, M.: Is the stochastic parabolicity condition dependent on \(p\) and \(q\)? Electron. J. Probab. 17(56), 24 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Cameron, R.H., Martin, W.T.: The orthogonal development of nonlinear functionals in a series of Fourier–Hermite functions. Ann. Math. 48(2), 385–392 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Z.-Q., Kim, K.-H., Kim, P.: Fractional time stochastic partial differential equations. Stoch. Process. Appl. 125(4), 1470–1499 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Freidlin, M.I.: Some remarks on the Smoluchowski–Kramers approximation. J. Stat. Phys. 117(3–4), 617–634 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Henry, B.I., Langlands, T.A.M., Straka, P.: An Introduction to Fractional Diffusion, Complex Physical, Biophysical, and Econophysical Systems, Lecture Notes in Complex Systems, vol. 9, pp. 37–89. World Scientific, Singapore (2010)

    Book  Google Scholar 

  7. Ito, K.: Multiple Wiener integral. J. Math. Soc. Jpn. 3, 157–169 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kochubei, A.N.: Diffusion of fractional order. Differ. Equ. 26(4), 485–492 (1990)

    MathSciNet  MATH  Google Scholar 

  9. Kondratiev, Y.G., Leukert, P., Potthoff, J., Streit, L., Westerkamp, W.: Generalized functionals in Gaussian spaces: the characterization theorem revisited. J. Funct. Anal. 141(2), 301–318 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kwok, S.F.: Fractional Langevin equation and Riemann–Liouville fractional derivative. Eur. Phys. J. E 24, 139–143 (2007)

    Article  Google Scholar 

  11. Liu, W., Röckner, M., da Silva, J.L.: Quasi-linear (stochastic) partial differential equations with time-fractional derivatives. SIAM J. Math. Anal. 50(3), 2588–2607 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lototsky, S.V., Rozovsky, B.L.: Stochastic differential equations: a Wiener chaos approach. In: Kabanov, Y., Liptser, R., Stoyanov, J. (eds.) From Stochastic Calculus to Mathematical Finance: The Shiryaev Festschrift, pp. 433–507. Springer, Berlin (2006)

    Chapter  Google Scholar 

  13. Lototsky, S.V., Rozovsky, B.L.: Wiener chaos solutions of linear stochastic evolution equations. Ann. Probab. 34(2), 638–662 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lototsky, S.V., Rozovsky, B.L.: Stochastic parabolic equations of full second order. In: Topics in Stochastic Analysis and Nonparametric Estimation, The IMA Volumes in Mathematics and its Applications, vol. 145, pp. 199–210. Springer, New York (2008)

  15. Lototsky, S.V., Rozovsky, B.L.: Stochastic Partial Differential Equations. Springer, Cham (2017)

    Book  MATH  Google Scholar 

  16. Lototsky, S.V., Rozovsky, B.L., Seleši, D.: On generalized Malliavin calculus. Stoch. Process. Appl. 122(3), 808–843 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus, De Gruyter Studies in Mathematics, vol. 43. Walter de Gruyter & Co, Berlin (2012)

    MATH  Google Scholar 

  18. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusions: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering, vol. 198. Academic Press Inc, San Diego (1999)

    MATH  Google Scholar 

  20. Ross, B., Samko, S.G., Love, E.R.: Functions that have no first order derivative might have fractional derivatives of all orders less than one. Real Anal. Exch. 20(1), 140–157 (1994/95)

  21. Sinai, Y.G.: The limit behavior of a one-dimensional random walk in a random environment (Russian). Teor. Veroyatnost. i Primenen. 27(2), 247–258 (1982)

    MathSciNet  Google Scholar 

  22. Sokolov, I.M., Klafter, J.: From diffusion to anomalous diffusion: a century after Einstein’s Brownian motion. Chaos 15(2), 026103 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328(2), 1075–1081 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Lototsky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported by ARO Grant W911N-16-1-0103.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lototsky, S.V., Rozovsky, B.L. Classical and generalized solutions of fractional stochastic differential equations. Stoch PDE: Anal Comp 8, 761–786 (2020). https://doi.org/10.1007/s40072-019-00158-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-019-00158-2

Keywords

Mathematics Subject Classification

Navigation