Skip to main content
Log in

High-order efficient numerical method for solving a generalized fractional Oldroyd-B fluid model

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This paper investigates the high-order efficient numerical method with the corresponding stability and convergence analysis for the generalized fractional Oldroyd-B fluid model. Firstly, a high-order compact finite difference scheme is derived with accuracy \(O\left( \tau ^{\min {\{3-\gamma ,2-\alpha }\}}+h^{4}\right) \), where \(\gamma \in (1,2)\) and \(\alpha \in (0,1)\) are the orders of the time fractional derivatives. Then, by means of a new inner product, the unconditional stability and convergence in the maximum norm of the derived high-order numerical method have been discussed rigorously using the energy method. Finally, numerical experiments are presented to test the convergence order in the temporal and spatial direction, respectively. To precisely demonstrate the computational efficiency of the derived high-order numerical method, the maximum norm error and the CPU time are measured in contrast with the second-order finite difference scheme for the same temporal grid size. Additionally, the derived high-order numerical method has been applied to solve and analyze the flow problem of an incompressible Oldroyd-B fluid with fractional derivative model bounded by two infinite parallel rigid plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus. World Scientific, New Jersey (2012)

    Book  MATH  Google Scholar 

  2. Cui, M.R.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228, 7792–7804 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dehghan, M., Safarpoor, M., Abbaszadeh, M.: Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J. Comput. Appl. Math. 290, 174–195 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Du, R., Cao, W., Sun, Z.Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34, 2998–3009 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Feng, L., Liu, F., Turner, I., Zheng, L.: Novel numerical analysis of multi-term time fractional viscoelastic non-Newtonian fluid models for simulating unsteady MHD Couette flow of a generalized Oldroyd-B fluid. Fract. Calc. Appl. Anal. 21, 1073–1103 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Feng, L., Liu, F., Turner, I., Zhuang, P.: Numerical methods and analysis for simulating the flow of a generalized Oldroyd-B fluid between two infinite parallel rigid plates. Int. J. Heat Mass Transf. 115, 1309–1320 (2017)

    Article  Google Scholar 

  7. Gao, G.H., Sun, Z.Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  9. Khan, M., Hyder Ali, S., Qi, H.T.: Some accelerated flows for a generalized Oldroyd-B fluid. Nonlinear Anal. Real World Appl. 10, 980–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, C.P., Cai, M.: Theory and Numerical Approximations of Fractional Integrals and Derivatives. Society for Industrial and Applied Mathematics, Philadelphia (2019)

    Book  Google Scholar 

  11. Liu, F., Zhuang, P., Liu, Q.: Numerical Methods of Fractional Partial Differential Equations and Applications. Science Press, Beijing (2015)

    Google Scholar 

  12. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Danbury (2006)

    Google Scholar 

  13. Maskari, M., Karaa, S.: Galerkin FEM for a time-fractional Oldroyd-B fluid problem. Adv. Comput. Math. 45, 1005–1029 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Metzler, R., Klafter, J.: The random walk’s guide to a nomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MATH  Google Scholar 

  15. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Physiol. Anthropol. 37, R161–R208 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  17. Qi, H.T., Xu, M.Y.: Stokes’ first problem for a viscoelastic fluid with the generalized Oldroyd-B model. Acta. Mech. Sin. 23, 463–469 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rasheed, A., Wahab, A., Shah, S., Nawaz, R.: Finite difference-finite element approach for solving fractional Oldroyd-B equation. Adv. Diff. Equ. 2016, 236 (2016)

  19. Riaz, M.B., Imran, M.A., Shabbir, K.: Analytic solutions of Oldroyd-B fluid with fractional derivatives in a circular duct that applies a constant couple. Alexandria Eng. J. 55, 3267–3275 (2016)

    Article  Google Scholar 

  20. Sun, Z.Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sun, Z.Z.: Compact difference schemes for the heat equation with Neumann boundary conditions. Numer. Methods Part. Differ. Equ. 25, 1320–1341 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tan, W.C., Fu, C.Q., Fu, C.J., Xie, W.J., Cheng, H.P.: An anomalous subdiffusion model for calcium spark in cardiac myocytes. Appl. Phys. Lett. 91, 183901 (2007)

    Article  Google Scholar 

  23. Vasileva, D., Bazhlekov, I., Bazhlekova, E.: Alternating direction implicit schemes for two-dimensional generalized fractional Oldroyd-B fluids. AIP Conf. Proc. 1684, 080014 (2015)

    Article  MATH  Google Scholar 

  24. Yu, B., Jiang, X.Y., Xu, H.: A novel compact numerical method for solving the two-dimensional non-linear fractional reaction–subdiffusion equation. Numer. Algorithms 68, 923–950 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yu, B., Jiang, X.Y.: Numerical identification of the fractional derivatives in the two-dimensional fractional Cable equation. J. Sci. Comput. 68, 252–272 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yu, B., Jiang, X.Y., Qi, H.T.: Numerical method for the estimation of the fractional parameters in the fractional mobile/immobile advection–diffusion model. Int. J. Comput. Math. 95, 1131–1150 (2018)

    Article  MathSciNet  Google Scholar 

  27. Yu, B., Jiang, X.Y.: Temperature prediction by a fractional heat conduction model for the bi-layered spherical tissue in the hyperthermia experiment. Int. J. Therm. Sci. 145, 105990 (2019)

    Article  Google Scholar 

  28. Zhang, J., Liu, F., Anh, V.: Analytical and numerical solutions of a two-dimensional multi-term time-fractional Oldroyd-B model. Numer. Methods Part. Differ. Equ. 35, 875–893 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, Y., Jiang, J., Bai, Y.: MHD flow and heat transfer analysis of fractional Oldroyd-B nanofluid between two coaxial cylinders. Comput. Math. Appl. 78, 3408–3421 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zheng, L., Liu, Y., Zhang, X.: Slip effects on MHD flow of a generalized Oldroyd-B fluid with fractional derivative. Nonlinear Anal. Real World Appl. 13, 513–523 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of Shandong Province, China (Grant No. ZR2017MA030), China Postdoctoral Science Foundation (Grant Nos. 2018T110679 and 2016M602127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B. High-order efficient numerical method for solving a generalized fractional Oldroyd-B fluid model. J. Appl. Math. Comput. 66, 749–768 (2021). https://doi.org/10.1007/s12190-020-01458-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01458-w

Keywords

Mathematics Subject Classification

Navigation