Skip to main content

Advertisement

Log in

Identification of immune-related genes with prognostic significance in the microenvironment of cutaneous melanoma

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Cutaneous melanoma is one of the most aggressive cancers characterized by increasing incidence and mortality. In recent years, the emergence of immunotherapy has greatly raised the survival rate of patients suffering from cutaneous melanoma, yet some sufferers remain to have poor outcomes after treatment mainly due to the tumor microenvironment (TME). In this study, cutaneous melanoma–associated TME was systematically analyzed using the ESTIMATE algorithm based on the gene transcriptome data obtained from the TCGA database. Totally, 471 patients were included and 553 TME-related genes were screened. Afterwards, a 3-gene signature–based model (CLEC4A, GBP4, KIR2DL4) was constructed via univariate Cox, LASSO, and multivariate Cox regression analyses. To validate the validity of this model, ROC analysis was conducted, and the model was further validated to be an independent prognostic biomarker through univariate and multivariate regression analyses. Finally, the three genes in the model were studied by GSEA and GSVA for their biological significance. We found that the three genes could promote cancer immune response predominantly through affecting immune-related pathways such as antigen processing and presentation, and they may help tumor cells in escaping from surveillance of the immune system when their expression levels were decreased. Additionally, we as well discovered that the expression of the three genes was significantly and positively correlated with the infiltration of related immune cells, but negatively associated with tumor purity. Overall, this study comprehensively analyzed the TME of cutaneous melanoma, identified related biomarkers, and discovered their association with immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data and materials in the current study are available from the corresponding author on reasonable request.

References

  1. Fischer GM, Vashisht Gopal YN, McQuade JL, Peng W, DeBerardinis RJ, Davies MA (2018) Metabolic strategies of melanoma cells: mechanisms, interactions with the tumor microenvironment, and therapeutic implications. Pigment Cell Melanoma Res 31:11–30. https://doi.org/10.1111/pcmr.12661

    Article  PubMed  Google Scholar 

  2. Riaz N, Havel JJ, Kendall SM, Makarov V, Walsh LA, Desrichard A, Weinhold N, Chan TA (2016) Recurrent SERPINB3 and SERPINB4 mutations in patients who respond to anti-CTLA4 immunotherapy. Nat Genet 48:1327–1329. https://doi.org/10.1038/ng.3677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cabel L, Riva F, Servois V, Livartowski A, Daniel C, Rampanou A, Lantz O, Romano E, Milder M, Buecher B, Piperno-Neumann S, Bernard V, Baulande S, Bieche I, Pierga JY, Proudhon C, Bidard FC (2017) Circulating tumor DNA changes for early monitoring of anti-PD1 immunotherapy: a proof-of-concept study. Ann Oncol 28:1996–2001. https://doi.org/10.1093/annonc/mdx212

    Article  CAS  PubMed  Google Scholar 

  4. Melero I, Gaudernack G, Gerritsen W, Huber C, Parmiani G, Scholl S, Thatcher N, Wagstaff J, Zielinski C, Faulkner I, Mellstedt H (2014) Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol 11:509–524. https://doi.org/10.1038/nrclinonc.2014.111

    Article  CAS  PubMed  Google Scholar 

  5. Valsecchi M, Combined E (2015) Nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:1270–1271. https://doi.org/10.1056/NEJMc1509660

    Article  PubMed  Google Scholar 

  6. Vigneron N (2015) Human tumor antigens and cancer immunotherapy. Biomed Res Int 2015:948501–948517. https://doi.org/10.1155/2015/948501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hui L, Chen Y (2015) Tumor microenvironment: sanctuary of the devil. Cancer Lett 368:7–13. https://doi.org/10.1016/j.canlet.2015.07.039

    Article  CAS  PubMed  Google Scholar 

  8. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322. https://doi.org/10.1016/j.ccr.2012.02.022

    Article  CAS  PubMed  Google Scholar 

  9. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70. https://doi.org/10.1016/s0092-8674(00)81683-9

    Article  CAS  PubMed  Google Scholar 

  10. Galon J, Pagès F, Marincola FM, Thurin M, Trinchieri G, Fox BA, Gajewski TF, Ascierto PA (2012) The immune score as a new possible approach for the classification of cancer. J Transl Med 10:1. https://doi.org/10.1186/1479-5876-10-1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, Treviño V, Shen H, Laird PW, Levine DA, Carter SL, Getz G, Stemke-Hale K, Mills GB, Verhaak RGW (2013) Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4:2612. https://doi.org/10.1038/ncomms3612

    Article  CAS  PubMed  Google Scholar 

  12. Senbabaoglu Y et al (2016) Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol 17:231. https://doi.org/10.1186/s13059-016-1092-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Larsen E, Celi A, Gilbert GE, Furie BC, Erban JK, Bonfanti R, Wagner DD, Furie B (1989) PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell 59:305–312. https://doi.org/10.1016/0092-8674(89)90292-4

    Article  CAS  PubMed  Google Scholar 

  14. Cooper LA et al (2012) The tumor microenvironment strongly impacts master transcriptional regulators and gene expression class of glioblastoma. Am J Pathol 180:2108–2119. https://doi.org/10.1016/j.ajpath.2012.01.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barnes TA, Amir E (2017) HYPE or HOPE: the prognostic value of infiltrating immune cells in cancer. Br J Cancer 117:451–460. https://doi.org/10.1038/bjc.2017.220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ladanyi A (2015) Prognostic and predictive significance of immune cells infiltrating cutaneous melanoma. Pigment Cell Melanoma Res 28:490–500. https://doi.org/10.1111/pcmr.12371

    Article  PubMed  Google Scholar 

  17. Tas F, Erturk K (2017) Tumor infiltrating lymphocytes (TILs) may be only an independent predictor of nodal involvement but not for recurrence and survival in cutaneous melanoma patients. Cancer Investig 35:501–505. https://doi.org/10.1080/07357907.2017.1351984

    Article  Google Scholar 

  18. Tamborero D, Rubio-Perez C, Muiños F, Sabarinathan R, Piulats JM, Muntasell A, Dienstmann R, Lopez-Bigas N, Gonzalez-Perez A (2018) A pan-cancer landscape of interactions between solid tumors and infiltrating immune cell populations. Clin Cancer Res 24:3717–3728. https://doi.org/10.1158/1078-0432.CCR-17-3509

    Article  CAS  PubMed  Google Scholar 

  19. Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J, Jiang P, Shen H, Aster JC, Rodig S, Signoretti S, Liu JS, Liu XS (2016) Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol 17:174. https://doi.org/10.1186/s13059-016-1028-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen P et al (2020) Identification of prognostic immune-related genes in the tumor microenvironment of endometrial cancer. Aging (Albany NY) 12:3371–3387. https://doi.org/10.18632/aging.102817

    Article  CAS  Google Scholar 

  21. Yang S, Liu T, Nan H, Wang Y, Chen H, Zhang X, Zhang Y, Shen B, Qian P, Xu S, Sui J, Liang G (2020) Comprehensive analysis of prognostic immune-related genes in the tumor microenvironment of cutaneous melanoma. J Cell Physiol 235:1025–1035. https://doi.org/10.1002/jcp.29018

    Article  CAS  PubMed  Google Scholar 

  22. Ritchie ME et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/nar/gkv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287. https://doi.org/10.1089/omi.2011.0118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45:W98–W102. https://doi.org/10.1093/nar/gkx247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hanzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7. https://doi.org/10.1186/1471-2105-14-7

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bohme I, Bosserhoff AK (2016) Acidic tumor microenvironment in human melanoma. Pigment Cell Melanoma Res 29:508–523. https://doi.org/10.1111/pcmr.12495

    Article  CAS  PubMed  Google Scholar 

  28. Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, Linette GP, Meyer N, Giguere JK, Agarwala SS, Shaheen M, Ernstoff MS, Minor D, Salama AK, Taylor M, Ott PA, Rollin LM, Horak C, Gagnier P, Wolchok JD, Hodi FS (2015) Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 372:2006–2017. https://doi.org/10.1056/NEJMoa1414428

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shah DJ, Dronca RS (2014) Latest advances in chemotherapeutic, targeted, and immune approaches in the treatment of metastatic melanoma. Mayo Clin Proc 89:504–519. https://doi.org/10.1016/j.mayocp.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  30. Jia D et al (2018) Mining TCGA database for genes of prognostic value in glioblastoma microenvironment. Aging (Albany NY) 10:592–605. https://doi.org/10.18632/aging.101415

    Article  CAS  Google Scholar 

  31. Vincent KM, Findlay SD, Postovit LM (2015) Assessing breast cancer cell lines as tumour models by comparison of mRNA expression profiles. Breast Cancer Res 17:114. https://doi.org/10.1186/s13058-015-0613-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luebker SA, Zhang W, Koepsell SA (2017) Comparing the genomes of cutaneous melanoma tumors to commercially available cell lines. Oncotarget 8:114877–114893. https://doi.org/10.18632/oncotarget.22928

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bates EE et al (1999) APCs express DCIR, a novel C-type lectin surface receptor containing an immunoreceptor tyrosine-based inhibitory motif. J Immunol 163:1973–1983

    CAS  PubMed  Google Scholar 

  34. Meyer-Wentrup F, Benitez-Ribas D, Tacken PJ, Punt CJA, Figdor CG, de Vries IJM, Adema GJ (2008) Targeting DCIR on human plasmacytoid dendritic cells results in antigen presentation and inhibits IFN-alpha production. Blood 111:4245–4253. https://doi.org/10.1182/blood-2007-03-081398

    Article  CAS  PubMed  Google Scholar 

  35. Sancho D, Reis e Sousa C (2012) Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu Rev Immunol 30:491–529. https://doi.org/10.1146/annurev-immunol-031210-101352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fujikado N, Saijo S, Yonezawa T, Shimamori K, Ishii A, Sugai S, Kotaki H, Sudo K, Nose M, Iwakura Y (2008) Dcir deficiency causes development of autoimmune diseases in mice due to excess expansion of dendritic cells. Nat Med 14:176–180. https://doi.org/10.1038/nm1697

    Article  CAS  PubMed  Google Scholar 

  37. Uto T, Fukaya T, Takagi H, Arimura K, Nakamura T, Kojima N, Malissen B, Sato K (2016) Clec4A4 is a regulatory receptor for dendritic cells that impairs inflammation and T-cell immunity. Nat Commun 7:11273. https://doi.org/10.1038/ncomms11273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weng TY, Li CJ, Li CY, Hung YH, Yen MC, Chang YW, Chen YH, Chen YL, Hsu HP, Chang JY, Lai MD (2017) Skin delivery of Clec4a small hairpin RNA elicited an effective antitumor response by enhancing CD8(+) immunity in vivo. Mol Ther Nucleic Acids 9:419–427. https://doi.org/10.1016/j.omtn.2017.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peters MJ et al (2013) Identification of CLEC4A gene-expression levels in peripheral blood as a potential biomarker for knee joint effusion

  40. Kim BH, Shenoy AR, Kumar P, Bradfield CJ, MacMicking JD (2012) IFN-inducible GTPases in host cell defense. Cell Host Microbe 12:432–444. https://doi.org/10.1016/j.chom.2012.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hotter D, Sauter D, Kirchhoff F (2017) Guanylate binding protein 5: impairing virion infectivity by targeting retroviral envelope glycoproteins. Small GTPases 8:31–37. https://doi.org/10.1080/21541248.2016.1189990

    Article  CAS  PubMed  Google Scholar 

  42. Tyrkalska SD, Candel S, Angosto D, Gómez-Abellán V, Martín-Sánchez F, García-Moreno D, Zapata-Pérez R, Sánchez-Ferrer Á, Sepulcre MP, Pelegrín P, Mulero V (2016) Neutrophils mediate Salmonella Typhimurium clearance through the GBP4 inflammasome-dependent production of prostaglandins. Nat Commun 7:12077. https://doi.org/10.1038/ncomms12077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vestal DJ, Jeyaratnam JA (2011) The guanylate-binding proteins: emerging insights into the biochemical properties and functions of this family of large interferon-induced guanosine triphosphatase. J Interf Cytokine Res 31:89–97. https://doi.org/10.1089/jir.2010.0102

    Article  CAS  Google Scholar 

  44. Shenoy AR, Wellington DA, Kumar P, Kassa H, Booth CJ, Cresswell P, MacMicking JD (2012) GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science 336:481–485. https://doi.org/10.1126/science.1217141

    Article  CAS  PubMed  Google Scholar 

  45. Friedman K, Brodsky AS, Lu S, Wood S, Gill AJ, Lombardo K, Yang D, Resnick MB (2016) Medullary carcinoma of the colon: a distinct morphology reveals a distinctive immunoregulatory microenvironment. Mod Pathol 29:528–541. https://doi.org/10.1038/modpathol.2016.54

    Article  CAS  PubMed  Google Scholar 

  46. Godoy P, Cadenas C, Hellwig B, Marchan R, Stewart J, Reif R, Lohr M, Gehrmann M, Rahnenführer J, Schmidt M, Hengstler JG (2014) Interferon-inducible guanylate binding protein (GBP2) is associated with better prognosis in breast cancer and indicates an efficient T cell response. Breast Cancer 21:491–499. https://doi.org/10.1007/s12282-012-0404-8

    Article  PubMed  Google Scholar 

  47. Johnson LN (2011) Substrates of mitotic kinases. Sci Signal 4:pe31. https://doi.org/10.1126/scisignal.2002234

    Article  CAS  PubMed  Google Scholar 

  48. Fellenberg F, Hartmann TB, Dummer R, Usener D, Schadendorf D, Eichmüller S (2004) GBP-5 splicing variants: new guanylate-binding proteins with tumor-associated expression and antigenicity. J Invest Dermatol 122:1510–1517. https://doi.org/10.1111/j.0022-202X.2004.22613.x

    Article  CAS  PubMed  Google Scholar 

  49. Wang Q, Wang X, Liang Q, Wang S, Xiwen L, Pan F, Chen H, Li D (2018) Distinct prognostic value of mRNA expression of guanylate-binding protein genes in skin cutaneous melanoma. Oncol Lett 15:7914–7922. https://doi.org/10.3892/ol.2018.8306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rajagopalan S (2010) Endosomal signaling and a novel pathway defined by the natural killer receptor KIR2DL4 (CD158d). Traffic 11:1381–1390. https://doi.org/10.1111/j.1600-0854.2010.01112.x

    Article  CAS  PubMed  Google Scholar 

  51. Takei Y et al (2017) Killer cell immunoglobulin-like receptor 2DL4 is expressed in and suppresses the cell growth of Langerhans cell histiocytosis. Oncotarget 8:36964–36972. https://doi.org/10.18632/oncotarget.16936

    Article  PubMed  PubMed Central  Google Scholar 

  52. Blum JS, Wearsch PA, Cresswell P (2013) Pathways of antigen processing. Annu Rev Immunol 31:443–473. https://doi.org/10.1146/annurev-immunol-032712-095910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kotsias F, Cebrian I, Alloatti A (2019) Antigen processing and presentation. Int Rev Cell Mol Biol 348:69–121. https://doi.org/10.1016/bs.ircmb.2019.07.005

    Article  PubMed  Google Scholar 

  54. Reeves E, James E (2017) Antigen processing and immune regulation in the response to tumours. Immunology 150:16–24. https://doi.org/10.1111/imm.12675

    Article  CAS  PubMed  Google Scholar 

  55. Villanueva J, Herlyn M (2008) Melanoma and the tumor microenvironment. Curr Oncol Rep 10:439–446. https://doi.org/10.1007/s11912-008-0067-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lewis DJ, Wu JH, Boyd M, Duvic M, Feldman SR (2019) Cutaneous manifestations of genodermatoses and primary immunodeficiency. Dermatol Online J 25(6):13030

  57. Maimela NR, Liu S, Zhang Y (2019) Fates of CD8+ T cells in tumor microenvironment. Comput Struct Biotechnol J 17:1–13. https://doi.org/10.1016/j.csbj.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  58. Chang CY, Tai JA, Li S, Nishikawa T, Kaneda Y (2016) Virus-stimulated neutrophils in the tumor microenvironment enhance T cell-mediated anti-tumor immunity. Oncotarget 7:42195–42207. https://doi.org/10.18632/oncotarget.9743

    Article  PubMed  PubMed Central  Google Scholar 

  59. Veglia F, Gabrilovich DI (2017) Dendritic cells in cancer: the role revisited. Curr Opin Immunol 45:43–51. https://doi.org/10.1016/j.coi.2017.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

QY and SQ both contributed to the work, including conception and design, article drafting, and revising. ZY, XE, and FJ are the guarantor for the article who accepts full responsibility for the work.

Corresponding authors

Correspondence to Yan Qu or Fengjuan Wang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors consent to submit the manuscript for publication.

Competing interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PNG 520 kb)

High Resolution (TIF 1447 kb)

ESM 3

Raw clinical data downloaded from TCGA database (XLSX 29.2 kb)

ESM 4

Stromal, immune and ESTIMATE scores calculated by ESTIMATE algorithm (XLSX 38.5 kb)

ESM 5

The genes significantly correlated with overall survival in patients (XLSX 37.2 kb)

ESM 6

Clinical significance of the risk model (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Y., Zhang, S., Zhang, Y. et al. Identification of immune-related genes with prognostic significance in the microenvironment of cutaneous melanoma. Virchows Arch 478, 943–959 (2021). https://doi.org/10.1007/s00428-020-02948-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-020-02948-9

Keywords

Navigation