Skip to main content
Log in

Caloric curves of self-gravitating fermions in general relativity

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the nature of phase transitions between gaseous and condensed states in the self-gravitating Fermi gas at finite temperature in general relativity. The condensed states can represent compact objects such as white dwarfs, neutron stars, or dark matter fermion balls. The caloric curves depend on two parameters: the system size R and the particle number N. When N < NOV, where NOV is the Oppenheimer–Volkoff limit, there exists an equilibrium state for any value of the temperature T and energy E as in the nonrelativistic case [P.H. Chavanis, Int. J. Mod. Phys. B 20, 3113 (2006)]. Gravitational collapse is prevented by quantum mechanics (Pauli’s exclusion principle). When N > NOV, there is no equilibrium state below a critical energy and below a critical temperature. In that case, the system is expected to collapse toward a black hole. We plot the caloric curves of the general relativistic Fermi gas, study the different types of phase transitions that occur in the system, and determine the phase diagram in the (R, N) plane. The nonrelativistic results are recovered for NNOV and RROV with NR3 fixed. The classical (non quantum) results are recovered for NNOV and RROV with NR fixed. We discuss the commutation of the limits c → + and → 0. We study the relativistic corrections to the nonrelativistic caloric curves and the quantum corrections to the classical caloric curves. We highlight a situation of physical interest where a self-gravitating Fermi gas, by cooling, first undergoes a phase transition toward a compact object (white dwarf, neutron star, dark matter fermion ball), then collapses into a black hole. This situation occurs in the microcanonical ensemble when NOV < N < 3.73 NOV. We also relate the phase transitions from a gaseous state to a core-halo state in the microcanonical ensemble to the onset of red-giant structure and to the supernova phenomenon.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Padmanabhan, Phys. Rep. 188, 285 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  2. J. Katz, Found. Phys. 33, 223 (2003)

    Article  MathSciNet  Google Scholar 

  3. P.H. Chavanis, Int. J. Mod. Phys. B 20, 3113 (2006)

    Article  ADS  Google Scholar 

  4. V.A. Antonov, Vest. Leningr. Gos. Univ. 7, 135 (1962)

    Google Scholar 

  5. D. Lynden-Bell, R. Wood, Mon. Not. R. Astron. Soc. 138, 495 (1968)

    Article  ADS  Google Scholar 

  6. J. Katz, Mon. Not. R. Astron. Soc. 183, 765 (1978)

    Article  ADS  Google Scholar 

  7. P.H. Chavanis, Astron. Astrophys. 432, 117 (2005)

    Article  ADS  Google Scholar 

  8. S. Chandrasekhar,An Introduction to the Theory of Stellar Structure (Dover, 1942)

  9. B.K. Harrison, K.S. Thorne, M. Wakano, J.A. Wheeler,Gravitation Theory and Gravitational Collapse (Chicago University Press, Chicago, 1965)

  10. S. Weinberg,Gravitation and Cosmology (John Wiley & Sons, 1972)

  11. S.L. Shapiro, S.A. TeukolskyBlack Holes, White Dwarfs, and Neutron Stars (Wiley Interscience, 1983)

  12. S. Chandrasekhar, Astrophys. J. 74, 81 (1931)

    Article  ADS  Google Scholar 

  13. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)

    Article  ADS  Google Scholar 

  14. N. Bilic, F. Munyaneza, G.B. Tupper, R.D. Viollier, Prog. Part. Nucl. Phys. 48, 291 (2002)

    Article  ADS  Google Scholar 

  15. N. Bilic, G.B. Tupper, R.D. Viollier, Lect. Notes Phys. 616, 24 (2003)

    Article  ADS  Google Scholar 

  16. H.J. de Vega, P. Salucci, N.G. Sanchez, Mon. Not. R. Astron. Soc. 442, 2717 (2014)

    Article  ADS  Google Scholar 

  17. R. Ruffini, C.R. Argüelles, J.A. Rueda, Mon. Not. R. Astron. Soc. 451, 622 (2015)

    Article  ADS  Google Scholar 

  18. P.H. Chavanis, M. Lemou, F. Méhats, Phys. Rev. D 92, 123527 (2015)

    Article  ADS  Google Scholar 

  19. G. Alberti, P.H. Chavanis, in preparation

  20. G. Alberti, P.H. Chavanis, Phys. Rev. E 101, 052105 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  21. P.H. Chavanis, Eur. Phys. J. Plus 135, 290 (2020)

    Article  Google Scholar 

  22. P.H. Chavanis, Eur. Phys. J. Plus 135, 310 (2020)

    Article  Google Scholar 

  23. P.H. Chavanis, M. Lemou, F. Méhats, Phys. Rev. D 91, 063531 (2015)

    Article  ADS  Google Scholar 

  24. P.H. Chavanis, Eur. Phys. J. B 87, 9 (2014)

    Article  ADS  Google Scholar 

  25. Dynamics and Thermodynamics of Systems with Long Range Interactions, edited by T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens, Lecture Notes in Physics (Springer, 2002), Vol. 602

  26. A. Campa, T. Dauxois, S. Ruffo, Phys. Rep. 480, 57 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Campa, T. Dauxois, D. Fanelli, S. Ruffo,Physics of Long-range Interacting Systems (Oxford University Press, 2014)

  28. P. Hertel, W. Thirring, Commun. Math. Phys. 24, 22 (1971)

    Article  ADS  Google Scholar 

  29. J.M. Lévy-Leblond, J. Math. Phys. 10, 806 (1969)

    Article  ADS  Google Scholar 

  30. P. Hertel, Acta Phys. Austr. Suppl. 17, 209 (1977)

    Google Scholar 

  31. P. Hertel, H. Narnhofer, W. Thirring, Commun. Math. Phys. 28, 159 (1972)

    Article  ADS  Google Scholar 

  32. J. Messer, Z. Physik 33, 313 (1979)

    Article  ADS  Google Scholar 

  33. B. Baumgartner, Commun. Math. Phys. 48, 207 (1976)

    Article  ADS  Google Scholar 

  34. H. Narnhofer, G.L. Sewell, Commun. Math. Phys. 71, 1 (1980)

    Article  ADS  Google Scholar 

  35. H. Narnhofer, G.L. Sewell, Commun. Math. Phys. 79, 9 (1981)

    Article  ADS  Google Scholar 

  36. W. Braun, K. Hepp, Commun. Math. Phys. 56, 101 (1977)

    Article  ADS  Google Scholar 

  37. P. Hertel, W. Thirring, Thermodynamic instability of a system of gravitating fermions, inQuanten und Felder, edited by H.P. Dürr (Vieweg, Brauschweig, 1971)

  38. J. Messer, J. Math. Phys. 22, 2910 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  39. J. Messer, Phys. Lett. 83A, 304 (1981)

    Article  ADS  Google Scholar 

  40. W. Thirring, Z. Physik 235, 339 (1970)

    Article  ADS  Google Scholar 

  41. P. Hertel, W. Thirring, Ann. Phys. 63, 520 (1971)

    Article  ADS  Google Scholar 

  42. E.B. Aronson, C.J. Hansen, Astrophys. J. 177, 145 (1972)

    Article  ADS  Google Scholar 

  43. R.D. Carlitz, Phys. Rev. D 5, 3231 (1972)

    Article  ADS  Google Scholar 

  44. S.W. Hawking, Phys. Rev. D 13, 191 (1976)

    Article  ADS  Google Scholar 

  45. P.H. Chavanis, B. Denet, M. Le Berre, Y. Pomeau, Eur. Phys. J. B 92, 271 (2019)

    Article  ADS  Google Scholar 

  46. Y. Pomeau, M. Le Berre, P.H. Chavanis, B. Denet, Eur. Phys. J. E 37, 26 (2014)

    Article  Google Scholar 

  47. P.H. Chavanis, B. Denet, M. Le Berre, Y. Pomeau, Europhys. Lett. 129, 30003 (2020)

    Article  ADS  Google Scholar 

  48. N. Bilic, R.D. Viollier, Phys. Lett. B 408, 75 (1997)

    Article  ADS  Google Scholar 

  49. P.H. Chavanis, J. Sommeria, Mon. Not. R. Astron. Soc. 296, 569 (1998)

    Article  ADS  Google Scholar 

  50. P.H. Chavanis, Phys. Rev. E 65, 056123 (2002)

    Article  ADS  Google Scholar 

  51. P.H. Chavanis, The self-gravitating Fermi gas, inDark Matter in Astro- and Particle Physics, edited by H.V. Klapdor-Kleingrothaus, R.D. Viollier (Springer, 2002)

  52. P.H. Chavanis, I. Ispolatov, Phys. Rev. E 66, 036109 (2002)

    Article  ADS  Google Scholar 

  53. P.H. Chavanis, M. Rieutord, Astron. Astrophys. 412, 1 (2003)

    Article  ADS  Google Scholar 

  54. P.H. Chavanis, Phys. Rev. E 69, 066126 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  55. D. Lynden-Bell, Mon. Not. R. Astron. Soc. 136, 101 (1967)

    Article  ADS  Google Scholar 

  56. N. Bilic, R.D. Viollier, Eur. Phys. J. C 11, 173 (1999)

    Article  ADS  Google Scholar 

  57. R. Genzel, F. Eisenhauer, S. Gillessen, Rev. Mod. Phys. 82, 3121 (2010)

    Article  ADS  Google Scholar 

  58. P.H. Chavanis, G. Alberti, Phys. Lett. B 801, 135155 (2020)

    Article  MathSciNet  Google Scholar 

  59. N. Bilić, R.D. Viollier, Gen. Rel. Grav. 31, 1105 (1999)

    Article  ADS  Google Scholar 

  60. Z. Roupas, Class. Quantum Grav. 30, 115018 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  61. Z. Roupas, Class. Quantum Grav. 32, 119501 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  62. Z. Roupas, Class. Quantum Grav. 32, 135023 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  63. R.C. Tolman, Phys. Rev. 35, 904 (1930)

    Article  ADS  Google Scholar 

  64. O. Klein, Rev. Mod. Phys. 21, 531 (1949)

    Article  ADS  Google Scholar 

  65. H. Poincaré, Acta Math. 7, 259 (1885)

    Article  MathSciNet  Google Scholar 

  66. J. Katz, Mon. Not. R. Astron. Soc. 189, 817 (1979)

    Article  ADS  Google Scholar 

  67. H. Cohn, Astrophys. J. 242, 765 (1980)

    Article  ADS  Google Scholar 

  68. T. Padmanabhan, Astrophys. J. Supp. 71, 651 (1989)

    Article  ADS  Google Scholar 

  69. P.H. Chavanis, Astron. Astrophys. 381, 340 (2002)

    Article  ADS  Google Scholar 

  70. D. Lynden-Bell, P.P. Eggleton, Mon. Not. R. Astron. Soc. 191, 483 (1980)

    Article  ADS  Google Scholar 

  71. S. Inagaki, D. Lynden-Bell, Mon. Not. R. Astron. Soc. 205, 913 (1983)

    Article  ADS  Google Scholar 

  72. C. Sire, P.H. Chavanis, Phys. Rev. E 69, 066109 (2004)

    Article  ADS  Google Scholar 

  73. R.D. Sorkin, R.M. Wald, Z.Z. Jiu, Gen. Relativ. Gravit. 13, 1127 (1981)

    Article  ADS  Google Scholar 

  74. P.H. Chavanis, Astron. Astrophys. 381, 709 (2002)

    Article  ADS  Google Scholar 

  75. P.H. Chavanis, Astron. Astrophys. 483, 673 (2008)

    Article  ADS  Google Scholar 

  76. Ya. B. Zel’dovich, Sov. Phys. JETP 15, 446 (1962)

    Google Scholar 

  77. H.A. Buchdahl, Phys. Rev. 116, 1027 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  78. S. Chandrasekhar, Astrophys. J. 140, 417 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  79. P.H. Chavanis, Phys. Rev. D 100, 083022 (2019)

    Article  ADS  Google Scholar 

  80. P.H. Chavanis, Phys. Rev. D 100, 123506 (2019)

    Article  ADS  Google Scholar 

  81. Z. Roupas, P.H. Chavanis, Class. Quant. Grav. 36, 065001 (2019)

    Article  ADS  Google Scholar 

  82. P.H. Chavanis, C. Sire, Phys. Rev. E 70, 026115 (2004)

    Article  ADS  Google Scholar 

  83. P.H. Chavanis, Astron. Astrophys. 556, A93 (2013)

    Article  ADS  Google Scholar 

  84. E. Lieb, W. Thirring, Ann. Phys. (NY) 155, 494 (1984)

    Article  ADS  Google Scholar 

  85. E. Lieb, H.-T. Yau, Commun. Math. Phys. 112, 147 (1987)

    Article  ADS  Google Scholar 

  86. E. Lieb, H.-T. Yau, Astrophys. J. 323, 140 (1987)

    Article  ADS  Google Scholar 

  87. J. Katz, G. Horwitz, Astrophys. J. 33, 251 (1977)

    Article  ADS  Google Scholar 

  88. G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 2752 (1977)

    Article  ADS  Google Scholar 

  89. J. Binney, S. Tremaine,Galactic Dynamics (Princeton Series in Astrophysics, 1987)

  90. C. Sire, P.H. Chavanis, Phys. Rev. E 66, 046133 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  91. L.D. Landau, Phys. Zeit. Sow. 1, 285 (1932)

    Google Scholar 

  92. D. Sugimoto, E. Bettwieser, Mon. Not. R. Astron. Soc. 204, 19 (1983)

    Article  ADS  Google Scholar 

  93. D. Heggie, N. Ramamani, Mon. Not. R. Astron. Soc. 237, 757 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Henri Chavanis.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alberti, G., Chavanis, PH. Caloric curves of self-gravitating fermions in general relativity. Eur. Phys. J. B 93, 208 (2020). https://doi.org/10.1140/epjb/e2020-100557-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100557-6

Keywords

Navigation