Skip to main content
Log in

Wavelet regularization strategy for the fractional inverse diffusion problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This manuscript deals with an inverse fractional-diffusing problem, the time-fractional heat conduction equation, which is a physical model of a problem, where one needs to identify the temperature distribution of a semi-conductor, but one transient temperature data is unreachable to measurement. Mathematically, it is designed as a time-fractional diffusion problem in a semi-infinite region, with polluted data measured at x = 1, where the solution is wanted for 0 ≤ x < 1. In view of Hadamard, the problem extremely suffers from an intrinsic ill-posedness, i.e., the true solution of the problem is computationally impossible to measure since any measurement or numerical computation is polluted by inevitable errors. In order to capture the solution, a regularization scheme based on the Meyer wavelet is therefore applied to treat the underlying problem in the presence of polluted data. The regularized solution is restored by the Meyer wavelet projection on elements of the Meyer multiresolution analysis (MRA). Furthermore, the concepts of convergence rate and stability of the proposed scheme are investigated and some new order-optimal stable estimates of the so-called Hölder-Logarithmic type are rigorously derived by carrying out both an a priori and a posteriori choice approaches in Sobolev scales. It turns out that both approaches yield the same convergence rate, except for some different constants. Finally, the computational performance of the proposed method effectively verifies the applicability and validity of our strategy. Meanwhile, the thrust of the present paper is compared with other sophisticated methods in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bisquert, J.: Interpretation of a fractional diffusion equation with nonconserved probability density in terms of experimental systems with trapping or recombination. Phys. Rev. E. 72(Part 1) (2005)

  2. Daubechies, I.: Ten lectures on wavelets. SIAM, Philadelphia (1990)

    MATH  Google Scholar 

  3. Fu, C.L., Xiong, X.T., Qian, Z.: Fourier regularization for a backward heat equation. J. Math. Anal. Appl. 331, 472–480 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hadamard, J.: Lectures on Cauchy Problems in Linear Partial Differential Equations. Yale University Press, New Haven (1923)

    MATH  Google Scholar 

  5. Hào, D.N., Reinhardt, H.J., Schneider, A.: Stable approximation of fractional derivatives of rough functions. BIT 35 (1995)

  6. Gorenflo, R., Mainardi, F., Moretti, D., Pagnini, G., Paradisi, P.: Discrete random walk models for space–time fractional diffusion. Chem. Phys. 284, 521—541 (2002)

    Article  MATH  Google Scholar 

  7. Kolaczyk, E.D.: Wavelet methods for the inversion of certain homogeneous linear operators in the presence of noisy data. Ph.D. thesis, Department of Statistics, Stanford University, Stanford, CA, 94305–4065 (1994)

  8. Kaur, H., Mittal, R.C., Mishra, V.: Haar wavelet approximate solutions for the generalized Lane-Emden equations arising in astrophysics. Comput. Phys. Comm. 184, 2169–2177 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jiwari, R.: A Haar wavelet quasilinearization approach for numerical simulation of Burger’s equation. Comput. Phys. Comm. 183, 2413–2423 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Meyer, Y.: Wavelets and Operators. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  11. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mendes, R.V.: A fractional calculus interpretation of the fractional volatility model. Nonlinear Dynam. 55, 395–399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  14. Cheng, H., Fu, C.L.: An iteration regularization for a time-fractional inverse diffusion problem. Appl. Math. Model. 36, 5642–5649 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheng, H., Gao, J., Zhu, P.: Optimal results for a time-fractional inverse diffusion problem under the hölder typesource condition. Bull. Iran. Math. Soc. 414, 825–834 (2015)

    MATH  Google Scholar 

  16. Sibatov, R.T., Uchaikin, V.V.: Fractional differential kinetics of charge transport in unordered semiconductors. Semiconductors 41, 335–340 (2007)

    Article  Google Scholar 

  17. Scher, H., Montroll, E.W.: Anomalous transit-time dispersion in amorphous. Phys. Rev. B 12(6), 2455–2477 (1975)

    Article  Google Scholar 

  18. Sokolov, I.M., Klafter, J., Blumen, A.: Fractional kinetics. Phys. Today 55, 48–54 (2002)

    Article  Google Scholar 

  19. Szabo, T.L., Wu, J.: A model for longitudinal and shear wave propagation in viscoelastic media, vol. 107 (2000)

  20. Tautenhahen, U.: Optimality for ill-posed problems under general source conditions. Zeitschrift für Analysis und ihre Anwendungen. 19, 377–398 (1998)

    MathSciNet  Google Scholar 

  21. Tautenhahen, U.: Optimal stable approximations for the sideways heat equation. J. Inverse Ill-Posed Probl. 5, 287–307 (1997)

    MathSciNet  Google Scholar 

  22. Yu, Z., Lin, J.: Numerical research on the coherent structure in the viscoelastic second-order mixing layers, vol. 19 (1998)

  23. Feng, X.L., Ning, W.T.: A wavelet regularization method for solving numerical analytic continuation. Int. J. Comput. Math. 92, 1025–1038 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Feng, X.L., Qian, Z.: An a posteriori wavelet method for solving two kinds of ill-posed problems. Int. J. Comput. Math. 95, 1895–1909 (2018)

    Article  MathSciNet  Google Scholar 

  25. Cheng, H., Fu, C.L.: Wavelets and numerical pseudodifferential operator. Appl. Math. Model. 40, 1776–1787 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Reginska, T.: Sideways heat equation and wavelets. J. Comput. Appl. Math. 63, 209–214 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Reginska, T., Elden, L.: Solving the sideways heat equation by a wavelet-Galerkin method. Inverse Probl. 13, 1093–1106 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hao, D.N., Schneider, A., Reinhardt, H.J.: Regularization of a non-characteristic Cauchy problem for a parabolic equation. Inverse Probl. 11, 1247–1263 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, J.R.: Uniform convergence of wavelet solution to the sideways heat equation. Acta Math. Sin. (Engl. Ser.). 10(26), 1981–1992 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Qiu, C.Y., Fu, C.L.: Wavelets and regularization of the Cauchy problem for the Laplace equation. J. Math. Anal. Appl. (2) 338, 1440–1447 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vani, C., Avudainayagam, A.: Regularized solution of the Cauchy problem for the Laplace equation using Meyer Wavelets. Math. Comput. Model. 36, 1151–1159 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Regińska, T., Eldén, L.: Stability and convergence of a wavelet-Galerkin method for the sideways heat equation. J. Inverse Ill-Posed Probl. 8, 31–49 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Linhares de Mattos, J.R., Lopes, E.P.: A wavelet Galerkin method applied to partial differential equation with variable coefficients. Electron. J. Differ. Equ. 10, 211–225 (2003)

    MathSciNet  MATH  Google Scholar 

  34. Eldén, L., Berntsson, F., Regińska, T.: Wavelet and fourier methods for solving the sideways heat equation. SIAM J. Sci. Comput. 21, 2178–2205 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Karimi, M., Rezaee, A.R.: Regularization of the Cauchy problem for the Helmholtz equation by using Meyer wavelet. J. Comput. Appl. Math. 320, 79–95 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Karimi, M., Moradlou, F., Hajipour, M.: On regularization and error estimates for the backward heat conduction problem with time-dependent thermal diffusivity factor. Commun. Nonlinear Sci. Numer. Simul. 63, 21–37 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Karimi, M., Moradlou, F., Hajipour, M.: Regularization technique for an inverse space-fractional backward heat conduction problem. J. Sci. Comput. 37, 83 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Tautenhahen, U., Schröter, T.: On optimal regularization methods for the backward heat equation. Numer. Funct. Anal. Optim. 15, 475–493 (1996)

    MathSciNet  MATH  Google Scholar 

  39. Tautenhahen, U.: Optimal stable approximations for the sideways heat equation. J. Invere Ill-Posed Probl. 5, 287–307 (1997)

    MathSciNet  Google Scholar 

  40. Zheng, G.H., Wei, T.: A new regularization method for solving a time-fractional inverse diffusion problem. J. Math. Anal. Appl. 378, 418–431 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to express their deep gratitude to the editor and anonymous referees for their careful reading and valuable suggestions to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milad Karimi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, M., Zallani, F. & Sayevand, K. Wavelet regularization strategy for the fractional inverse diffusion problem. Numer Algor 87, 1679–1705 (2021). https://doi.org/10.1007/s11075-020-01025-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-01025-1

Keywords

Mathematics Subject Classification (2010)

Navigation