Skip to main content

Advertisement

Log in

Forest Degradation Assessment Using UAV Optical Photogrammetry and SAR Data

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The sequestration of carbon in the forest is very high after soil and ocean; this is one of the major factors which makes monitoring of forests very much essential. The traditional inventory techniques were very much exhaustive and needed encroachment into the inaccessible forest area, which create lot of difficulties to foresters and other researchers, that is why, most of the areas of intense forests are untouched for monitoring purposes. The degradation of the forest area is highly prominent in the hilly terrain; activities such as lopping and forest fire are very common in these areas. In this research, UAV optical photogrammetric technique is used for the extraction of canopy metrics as well as for the generation of DSM and DTM, which is further used for the validation of the results obtained with the Sentinel-2 and Sentinel-1A data. The Sentinel-1A of C-band data is used for the generation of backscatter image, texture images. Sentinel-2 is used for the calculation of various vegetation-based indices for the evaluation of the proficiency of the degradation in the forest area. On the basis of various vegetation indices and texture images calculated, the degradation of the forest can be quantified. The random forest classifier is used for the classification of the forest into degraded and non-degraded classes. The classification accuracy obtained for three classes, i.e. degraded, non-degraded, non-forest is 0.86 and precision is 0.75. The correlation is 0.72 for the classes, whereas error rate is found to be 0.13. Hence, the integration of UAV optical photogrammetry and SAR data can give much appreciated results; also, this technique is very much helpful in monitoring and management of inaccessible forest areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baranwal, E., Seth, P., Pande, H., Raghavendra, S., & Kushwaha, S.K.P. (2020). Application of Unmanned Aerial Vehicle (UAV) for damage assessment of a cultural heritage monument. In K. Jain, K. Khoshelham, X. Zhu, & A. Tiwari (Eds.) Proceedings of UASG 2019. UASG 2019. Lecture Notes in Civil Engineering, vol 51. Springer, Cham. https://doi.org/10.1007/978-3-030-37393-1_13.

  • Beijma, S. V., Comber, A., & Lamb, A. (2014). Remote sensing of environment random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sensing of Environment, 149, 118–129. https://doi.org/10.1016/j.rse.2014.04.010.

    Article  Google Scholar 

  • Cutler, M. E. J., Boyd, D. S., Foody, G. M., & Vetrivel, A. (2012). Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 66–77. https://doi.org/10.1016/j.isprsjprs.2012.03.011.

    Article  Google Scholar 

  • Daughtry, C. S. T., Walthall, C. L., Kim, M. S., & De Colstoun, E. B. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74(2), 229–239. https://doi.org/10.1016/S0034-4257(00)00113-9.

    Article  Google Scholar 

  • De Sy, V., Herold, M., Archad, F., Asner, G. P., Held, A., Kellndorfer, J., & Verbesselt, J. (2012). Synergies of multiple remote sensing data sources for REDD + monitoring. Current Opinion in Environmental Sustainability, 4(6), 696–706.  https://doi.org/10.1016/j.cosust.2012.09.013.

    Article  Google Scholar 

  • Deutscher, J., Perko, R., Gutjahr, K., Hirschmugl, M., & Schardt, M. (2013). Mapping tropical rainforest canopy disturbances in 3D by COSMO-SkyMed Spotlight InSAR-stereo data to detect areas of forest degradation. Remote Sensing, 5, 648–663.

    Article  Google Scholar 

  • Hojas-Gascon, L., Belward, A., Eva, H., Ceccherini, G., Hagolle, O., Garcia, J., & Cerutti, P. (2015). Potential improvement for forest cover and forest degradation mapping with the forthcoming Sentinel-2 program. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7/W3, 417–423. https://doi.org/10.5194/isprsarchives-XL-7-W3-417-2015.

    Article  Google Scholar 

  • Hong, S.-H., Kim, H.-O., Wdowinski, S., & Feliciano, E. (2015). Evaluation of polarimetric SAR decomposition for classifying wetland vegetation types. Remote Sensing, 7, 8563–8585.

    Article  Google Scholar 

  • Kovacs, J.M., Vandenberg, C.V., Wang, J., & Flores-Verdugo, F. (2008). The use of multipolarized spaceborne SAR backscatter for monitoring the health of a degraded mangrove forest. Journal of Coastal Research, 2008(241), 248–254. https://doi.org/10.2112/06-0660.1.

    Article  Google Scholar 

  • Kushwaha, S.K.P., Dayal, K.R., Singh, A., & Jain, K. (2019). Building facade and rooftop segmentation by normal estimation from UAV derived RGB point cloud. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W17, 173–177. https://doi.org/10.5194/isprs-archives-XLII-2-W17-173-2019

    Article  Google Scholar 

  • Margono, B.A., Turubanova, S., Zhuravleva, I., Potapov, P., Tyukavina, A., Baccini. A., Goetz, S., & Hansen, M.C. (2012). Mapping and monitoring deforestation and forest degradation in Sumatra (Indonesia) using Landsat time series data sets from 1990 to 2010. Environmental Research Letters, 7, 03010. https://doi.org/10.1088/1748-9326/7/3/034010.

    Article  Google Scholar 

  • Miettinen, J., Stibig, H., & Achard, F. (2014). Remote sensing of forest degradation in Southeast Asia—Aiming for a regional view through 5–30 m satellite data. Global Ecology and Conservation, 2, 24–36. https://doi.org/10.1016/j.gecco.2014.07.007.

    Article  Google Scholar 

  • Nezry, E., Mougin, E., Lopes, A., Gastellu-Etchegorry, J. P., & Laumonier, Y. (1993). Tropical vegetation mapping with combined visible and SAR spaceborne data. International Journal of Remote Sensing, 14(11), 2165–2184. https://doi.org/10.1080/01431169308954027.

    Article  Google Scholar 

  • Olander, L.P., Gibbs, H.K., Steininger, M., Swenson, J.J., & Murray, B.C. (2008). Reference scenarios for deforestation and forest degradation in support of REDD: A review of data and methods. Environmental Research Letters, 3, 025011. https://doi.org/10.1088/1748-9326/3/2/025011.

    Article  Google Scholar 

  • Remondino, F., Barazzetti, L., Nex, F.C., Scaioni, M., & Sarazzi, D. (2011). UAV photogrammetry for mapping and 3D modeling—current status and future perspectives. In H. Eisenbeiss, M. Kunz, & H. Ingensand (Eds.) ISPRS Archives Volume XXXVIII-1/C22: Proceedings of the international conference on unmanned aerial vehicle in geomatics (UAV-g), 14-16 September 2011, Zurich, Switzerland/edited by H. Eisenbeiss, M. Kunz and H. Ingensand. Zurich: ISPRS, 2011. ISSN: 2194-9034. pp. 25–31. Zurich, Switzerland: International Society for Photogrammetry and Remote Sensing (ISPRS).

  • Sarker, M.L.R., Nichol, J., Iz, H.B., Ahmad, B.B., & Rahman, A.A. (2013). Forest biomass estimation using texture measurements of high-resolution dual-polarization C-Band SAR Data. IEEE Transactions on Geoscience and Remote Sensing, 51(6), 3371–3384. https://doi.org/10.1109/TGRS.2012.2219872.

    Article  Google Scholar 

  • Simpson, J.E., Wooster, M.J., Smith, T.E.L., Trivedi, M., Vernimmen, R.R. E., Dedi, R., Shakti, M., & Dinata, Y. (2016). Tropical peatland burn depth and combustion heterogeneity assessed using UAV photogrammetry and airborne LiDAR. Remote Sensing, 8, 1000. https://doi.org/10.3390/rs8121000.

    Article  Google Scholar 

  • Singh, A., Kushwaha, S. K. P., & Kumar, S. (2020). Backscatter and coherence analysis using space borne C-band data for forest characterization. Journal of Geomatics, 141, 39–48. Retrieved from https://www.researchgate.net/publication/342707318_Backscatter_and_coherence_analysis_using_space_borne_C-band_data_for_forest_characterization.

  • The, M., Advancement, V., & Vegetation, O. F. N. (2019). Texas a&m university remote sensing center (September 1972).

  • Trisasongko, B.H. (2010). The use of polarimetric SAR data for Forest Disturbance Monitoring. Sensing and Imaging: An International Journal, 11, 1–13. https://doi.org/10.1007/s11220-010-0048-8.

    Article  Google Scholar 

  • Wu, C., Niu, Z., Tang, Q., & Huang, W. (2008). Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agricultural and Forest Meteorology, 148, 1230–1241. https://doi.org/10.1016/j.agrformet.2008.03.005

    Article  Google Scholar 

  • Zarco-tejada, P. J., Diaz-varela, R., Angileri, V., & Loudjani, P. (2014). Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. European Journal of Agronomy, 55, 89–99. https://doi.org/10.1016/j.eja.2014.01.004.

    Article  Google Scholar 

  • Zhang, F., Xie, C., Li, K., Xu, M., Wang, X., & Xia, Z. (2012). Forest and deforestation identification based on multitemporal polarimetric RADARSAT-2 images in Southwestern China. Journal of Applied Remote Sensing, 6(1), 063527. https://doi.org/10.1117/1.JRS.6.063527.

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Dr. Kamal Jain, a renowned professor at IIT Roorkee, for providing the UAV data sets for the study and European Earth Space Agency for providing Sentinel data sets. Without their support, this work was not possible to be done successfully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunima Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Kushwaha, S.K.P. Forest Degradation Assessment Using UAV Optical Photogrammetry and SAR Data. J Indian Soc Remote Sens 49, 559–567 (2021). https://doi.org/10.1007/s12524-020-01232-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-020-01232-2

Keywords

Navigation